
THE UNIVERSITY OF CHICAGO

MULTIRESOLUTION MATRIX FACTORIZATION

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

NEDELINA TENEVA

CHICAGO, ILLINOIS

AUGUST 2017

Copyright © 2017 by Nedelina Teneva

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . v

LIST OF TABLES . ix

ACKNOWLEDGMENTS . x

ABSTRACT . xi

INTRODUCTION . xii

1 PRELIMINARIES . 1
1.1 Overview . 1
1.2 Notation . 2

2 FOURIER AND MULTIRESOLUTION ANALYSIS 5
2.1 Classical Fourier Transform . 5
2.2 From Fourier to Wavelets . 7
2.3 Smoothness . 10
2.4 Classical Multiresolution Analysis . 12
2.5 Spectral Graph Theory Concepts . 17
2.6 Spectral Fourier Transform . 20
2.7 Multiresolution on Discrete, Unstructured Spaces 22

3 MULTIRESOLUTION DESIGNS FOR DISCRETE SPACES 25
3.1 Diffusion Wavelets . 26
3.2 Spectral Graph Wavelets . 29
3.3 Multiscale Wavelets on Trees . 32

4 MULTILEVEL AND MULTISCALE DESIGNS FOR FACTORIZING MATRICES 35
4.1 Jacobi’s Algorithm . 36
4.2 Treelets . 40
4.3 The Fast Walsh–Hadamard Transform . 43
4.4 The Fast Haar Wavelet Transform . 44
4.5 Multilevel and Multiscale Dictionary Learning 45
4.6 Hierarchical Matrices . 49

5 MULTIRESOLUTION MATRIX FACTORIZATION 55
5.1 Multiresolution Matrix Factorization (MMF) . 55
5.2 Computing MMFs . 64

5.2.1 Jacobi MMFs . 66
5.2.2 Parallel MMFs . 68
5.2.3 Randomized MMFs . 71
5.2.4 Computational Details . 72

5.3 Theoretical Analysis . 74

iii

5.4 Proofs of Propositions and Theorems . 76
5.5 Applications of MMF . 79
5.6 Experiments . 81

5.6.1 Comparison to Treelets . 82
5.6.2 Comparison of MMF Algorithms . 82
5.6.3 Effect of MMF Rotation Order . 84
5.6.4 Recovering Matrix Structure with MMF 85
5.6.5 Comparison of MMF and PCA . 86
5.6.6 MMF on Mixture Models . 89
5.6.7 MMF Wavelets . 95

6 MMF FOR MATRIX COMPRESSION . 104
6.1 Principle Component Analysis (PCA) . 105
6.2 Projection Based Methods for Matrix Compression 106
6.3 Nyström Methods for Matrix Compression . 108
6.4 MMF for Matrix Compression . 112
6.5 Experiments . 113

7 PARALLEL MULTIRESOLUTION MATRIX FACTORIZATION 118
7.1 Limitations of MMF Algorithms . 118
7.2 Parallel MMF (pMMF) . 119

7.2.1 Clustering . 121
7.2.2 Blocked Matrices . 123
7.2.3 Randomized Greedy Search for Rotations 125
7.2.4 Sparsity and Matrix Free MMF Arithmetic 126

7.3 pMMF Implementation: The pMMF Software Library 130
7.4 pMMF Experiments . 131

7.4.1 pMMF Matrix Approximation Quality 135
7.4.2 pMMF Scalability . 137

8 CONCLUSION AND CONTRIBUTION SUMMARY 140

REFERENCES . 142

iv

LIST OF FIGURES

2.1 Wavelet concepts and examples. (a) Fourier transform (right), windowed
Fourier transform (middle) and wavelet transform (right) phase planes with fre-
quency k and time x — unlike the Fourier transforms, the wavelet transform has
different resolution levels. (b) Discontinuities, such as those in the step func-
tion shown in black, induce a characteristic pattern of spurious oscillations and
over/underhoots in partial Fourier sums called the Gibbs phenomenon. (c) Haar
wavelet and scaling function. (d) Morlet wavelet. (e) Daubechies D2 wavelet and
scaling function. 8

2.2 MRA. Multiresolution analysis repeatedly splits the function spaces V0, V1, . . .
into a smoother part V`+1 and a rougher part W`+1. S` and D` denote the scaling
and the detail transform, respectively. 13

4.1 Hierarchical matrix structure. Depending on the constraints discussed in
Section 4.6 different types of hierarchical matrices have quite different tessella-
tions. For visual clarity in these figures we assume an ideal scenario, in which
the clusters consist of the same number of coordinates and the cluster trees are
binary and balanced, of height 4. (a) In an HODLR matrix the diagonal blocks
are dense (shown in gray), while the off-diagonal blocks (shown in white) can be
approximated by low rank matrices. (b) H2 matrices are a refinement of this
idea. Blocks which can be approximated by low rank matrices are shown in white. 49

5.1 MMF factorization schematic. As ` increases, an increasingly large part of the
U` matrices, specifically all but a δ`−1 × δ`−1 submatrix (shown as a gray square),
is just the identity In−δ`−1 (shown as gray ”tails” along the diagonal of U`).
The purpose of the permutation matrix Π is to ensure, purely for visualization
purposes, that it is always the last n − δ`−1 coordinates that are fixed by U`.
MMF algorithms do not impose this permutation constraint and at each level
some n − δ`−1 coordinates can be fixed instead. 58

5.2 Schematic of rotation matrices. The two types of sparse rotation matrices
that we consider are: (a) a simple rotation of order k (Definition 5), (b) a com-
pound rotation of order k (Definition 6). Similarly to Figure 5.1, the purpose
of the Π permutation matrices is just to ensure that the blocks of the matrices
appear contiguous in the figure. 61

5.3 MMF rotation hierarchy. (a) The rotation tree of a second order Jacobi MMF
of a matrix A ∈R5×5. (b) The partial rotation hierarchy of a third (k = 3) order
Jacobi MMF of A ∈ R10×10. Here the MMF only eliminates one dimension after
each rotation. (c) A similar tree for a second order greedy parallel MMF of A ∈

R8×8. An example of three rotation matrices which are described by this rotation
tree is: U1 = ⊕(d1, d2)

O⊕(d3, d4)
O⊕(d5, d6)

⊕(d7, d8)
O, U2 = I6⊕(d1, d3)

O⊕(d5, d7)
O

and U3 = I8⊕(d3, d5)
O. Unlike the other two figures here each block of the direct

sum is represented as a separate leaf. Note that this tree is perfectly balanced. . . 63

v

5.4 Comparison with Treelets. Frobenius norm error EFrob of compressing ma-
trices with GreedyJacobiMMF (with k = 2) vs. the Treelets algorithm as a
function of the dimension of the core HSL,SL that A is compressed down to. (a)
A is constructed from Zachary’s Karate Club graph (Zachary, 1977), as described
in the text. (b) A is a genetic relationships matrix. 83

5.5 GreeyParallelMMF vs. RandomizedMMF. Frobenius norm error EFrob of
compressing matrices with GreedyParallelMMF vs. RandomizedMMF as
a function of the dimension of the core HSL,SL that A is compressed down to.
For both algorithms the rotation order is k = 2. (a) A is a 1024× 1024 Kronecker
matrix, constructed as described in the text. (b) A is the dexter dataset from
Table 6.1. 83

5.6 MMF rotation order. Frobenius norm error EFrob of compressing matrices with
the RandomizedMMF with different orders k, as a function of the dimension of
the core HSL,SL that A is compressed down to. (a) A is a 1024× 1024 Kronecker
matrix, constructed as described in the text. (b) A is the dexter dataset from
Table 6.1. 84

5.7 MMF on structured matrices. Two Kronecker product matrices, denoted by
A, of different sizes and their approximations, denoted by Ã, by second order
GreedyParallelMMF. The third column shows the shuffled matrix A[p,p].
The fourth column shows A[p,p] reordered according to the MMF rotation tree.

For the smaller matrix, in (c), we also show the MMF rotation tree Ã. 87

5.8 MMF wavelets vs. eigenvectors. (a) Wavelets recovered by second order
parallel MMF on the distance matrix of the dataset of Gaussian random variables,
shown in (c) and described in Section 5.6.5. (b) The eigenvectors obtained by
PCA on the same matrix. In all plots the graph vertices are colored according to
the MMF wavelets or the PCA eigenvectors and the index i corresponds to the
i–th wavelet/eigenvector. 88

5.9 Matrix reconstruction by MMF vs. PCA. Approximation Ã of a Kronecker
product matrix A by GreedyParallelMMF and PCA. 89

5.10 MMF on mixture models. (a) and (b) Comparison of principle components
(left) and MMF wavelets (middle) on two different mixture models with their
corresponding covariance matrices (right). (c) Loading vectors for the mixture
model (left), the corresponding covariance matrix (left) and some of the recovered
MMF wavelets (middle), shown in different colors. This set of experiments was
performed using binary GreedyParallelMMF. 90

5.11 Haar wavelets with MMF. Reconstruction of the Haar wavelet transform on
the diffusion matrix of a cycle graph on n = 24 vertices by binary parallel MMF. . 94

5.12 Wavelets recovered by binary GreedyParallelMMF on the diffusion matrix
of the 4–cube graph. The vertex numbers are shown in binary. 96

5.13 MMF on Cayley graph. Wavelets recovered by binary GreedyParallelMMF
on the graph Laplacian of the Cayley graph of the symmetric group S4. 98

vi

5.14 MMF on a barbell graph. All the wavelets (of different resolution `) recovered
by binary GreedyParallelMMF on the diffusion matrix of a barbell graph
C8,1. 99

5.15 MMF wavelets on a hierarchical graph. Wavelets of different resolution
recovered by binary parallel MMF on the multiscale graph in Example 4 in Section
5.6.7. Points from the blue and the red Gaussians form one meta–cluster, while
the other three Gaussians form the other meta–cluster. The bars show the value
of specific wavelets at individual data points. 100

5.16 MMF wavelets on a random partition graph. Wavelets of different resolu-
tion recovered by second order parallel MMF on the diffusion kernel of a Gaussian
random partition graph described in Example 4 in Section 5.6.7. The plots show
the graph connectivity with each node colored according to the wavelet value at
that node. 101

6.1 MMF on random vs. structured matrices. Frobenius norm error EFrob of
compressing matrices with binary parallel MMF vs. the Uniform Nyström method
as a function of the dimension of the core HSL,SL that A is compressed down to. 114

6.2 Grassmann distance between subspaces. Grassmann distance (6.7) between
MMF subspaces of different dimensionality. The figure compares structured (Kro-
necker) and random matrices. 114

6.3 MMF approximation error. The Frobenius norm error EFrob of compressing
matrices with binary randomized MMF (Algorithm 3) vs. other sketching meth-
ods as a function of the dimension of the core HSL,SL that A is compressed down
to. 117

7.1 pMMF reblocking schematic. Illustration of the two stage reblocking strategy
used by the pMMF algorithm. The reblocking process starts with a blocked
matrix with 5 × 5 blocks which are reblocked in another set of 5 × 5 blocks. For
the sake of visual clarity, here we assume that the blocks are contiguous, but this
is generally not the case. The reblocking process involves reorganizing the rows
according to the new structure (top panel), then reorganizing the columns of the
resulting matrix (bottom panel). To perform this efficiently, the first operation is
done in parallel for each column of blocks (shown in different colors) of the original
matrix, and the second operation is done in parallel for each row of blocks (shown
in different colors) of the resulting matrix. 125

7.2 pMMF Frobenius norm error. The normalized Frobenius norm error of com-
pressing matrices with pMMF vs. other sketching methods as a function of the
dimension of the core HSL,SL that A is compressed down to. 133

7.3 pMMF spectral norm error. The normalized spectral norm error of com-
pressing matrices with pMMF vs. other sketching methods, as a function of the
the dimension of the core HSL,SL that A is compressed down to. 134

vii

7.4 pMMF time vs. sparsity. Execution time of pMMF as a function of the num-
ber of nonzero entries in the input matrix A. For each of the graph Laplacians of
size n, listed in Table 7.2, we take submatrices of varying sizes and compress each
of them with pMMF to a SL–core–diagonal matrix with core size of around 100.
The x and y axes, respectively, reflect the number of nonzero entries in each of
the submatrices and the running time of the MMF compression. Each datapoint
is averaged over five runs. 138

7.5 pMMF execution time. Execution time of pMMF as a function of the size of
the compressed submatrix HSL,SL on the datasets listed in Table 7.2. 139

viii

LIST OF TABLES

6.1 Datasets. Summary of the datasets used for the matrix compression experiments
(Bache and Lichman, 2013; Leskovec and Krevl, 2014; Davis and Hu, 2011).
For the normalized Laplacian kernels, the size reflects the number of vertices in
the dataset. When a linear or a radial basis function (RBF) kernel is used to
construct a symmetric kernel matrix, n is the number of data points and d is the
dimensionality of each data point. 112

7.1 pMMF complexity. The rough order of complexity of different subtasks in
pMMF vs. the serial greedy MMF algorithm (Algorithm 1). Here n is the di-
mensionality of the original matrix A, k is the order of the rotations, and γ is
the fraction of nonzero entries in A, when A is sparse. We neglect that dur-
ing the course of the computation γ tends to increase because concomitantly A`
shrinks, and computation time is usually dominated by the first few stages. We
also assume that entries of sparse matrices can be accessed in constant time. In
pMMF, P is the number of stages, m is the number of clusters in each stage,
and c is the typical cluster size (thus, c = θ(n/m)). The ”pMMF time” columns
give the time complexity of the algorithm assuming an architecture that affords
Nproc–fold parallelism. It is assumed that k ≤P ≤ c ≤n, but n = o(c2). Note that
in the simplest case of Givens rotations, k=2. 127

7.2 pMMF datasets. Summary of the datasets used in the pMMF compression
experiments (Bache and Lichman, 2013; Leskovec and Krevl, 2014; Davis and
Hu, 2011). All datasets are symmetric matrices of size n × n; nnz denotes the
number of nonzero entries in each dataset. For the Laplacian kernels, n reflects
the number of vertices in the dataset. The linear and RBF kernel matrices are
constructed from n data points in Rd. For RBF kernels σ is the width of the
kernel. 129

7.3 pMMF compression on large datasets. The normalized Frobenius and spec-
tral norm error, time (in seconds), and the dimension of the core HSL,SL that A
is compressed down to. 137

ix

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Risi Kondor, for his help, guidance,

inspiration and kindness on countless occasions during my Ph.D. His ability to approach

a problem from the most simple and intuitive direction drawing analogies between various

math and computer science areas has had a profound effect on my attitude towards research.

I would be forever grateful for the opportunity to see machine learning through this prism.

I am also very thankful for Risi’s help with the sometimes trivial logistics involved in being

a graduate student.

I would like to thank John Lafferty and Lek-Heng Lim for being on my thesis committee

and for the valuable comments and suggestions they had throughout the process.

Finally, I am grateful to all my friends who in the past six years were directly or indirectly

involved in helping this thesis happen .

x

ABSTRACT

In this thesis we introduce a new type of structure in matrices, called multiresolution factor-

izability, which is an alternative to the ubiquitous low rank assumption in machine learning

and numerical linear algebra. We show the connections between classical Fourier, wavelet

and multiresolution analysis — three concepts which have shaped most of applied math in

the last couple of decades — and (low rank) matrix factorizations, which are often implicitly

present in machine learning algorithms as subroutines and which have been one of the main

drivers of the scalability of these algorithms in recent years. We propose several different

Multiresolution Matrix Factorization (MMF) algorithms, some of which, like Parallel MMF

(publicly available in the form of a C++ software library) scale to modern size data, and

demonstrate that MMF can be used for compression of the type of large scale matrices and

graphs typically arising in machine learning applications.

xi

INTRODUCTION

As the size of modern datasets and the need for fast manipulation of large scale data in learn-

ing problems grow, there has been an increased interest in developing fast methods for low

rank matrix approximations, matrix factorizations, matrix compression, matrix completion

and randomized algorithms for matrices. Some of the advantages that these methods offer

are: efficient ways of storing large matrices, exploiting the matrix sparsity for downstream

algorithms, or speeding up certain matrix operations. Typically, these methods leverage

the fundamental theorem of linear algebra and assume that the underlying matrix can be

well approximated by another low rank matrix. Yet, for matrices arising from real data,

such as graphs, it is often the case that the low rank assumption, despite the computational

advantages that it offers, does not suffice to explain many complex and frequently observed

phenomena. For one, the matrix being factorized might be close to full rank, or it could

have a structure that cannot be fully captured by the notion of rank (e.g., multilevel block

structure, rather than low rank structure). Therefore, rank alone is not sufficient to capture

the rich structural information encoded in matrices, such as distance or kernel matrices.

Similarly, in machine learning applications, such as clustering and community detection,

it has become clear that real graphs (and, as a result, matrices derived from them) have

nontrivial intrinsic structure — for example, they exhibit strong locality properties (e.g., the

degree distribution of those graphs follow the so called power law, described by Barabási

and Albert (1999)), and typically have a multiscale structure (i.e., vertices are organized

in a hierarchical, “clusters–of–clusters” manner based on an appropriately chosen distance

metric). Disentangling this complex structure is vital for: (i) the construction of efficient and

scalable methods for graphs/matrices, and (ii) the characterization and modeling of graphs.

Despite the similar multilevel/multiscale/multiresolution structure of graphs and data

matrices agreed upon in these different fields, no unified framework exists yet for analyz-

ing, interpreting and modeling this type of structure in graphs/matrices. The algorithmic

framework described in this thesis for tackling this type of structure leverages ideas from

xii

the theory of wavelets and multiresolution analysis. Its broader context includes multilevel

and multiscale representations and factorizations of matrices and graphs in machine learn-

ing, numerical linear algebra and harmonic analysis. In the last few decades multiscale

numerical analysis methods, such as multigrid and multipole ideas (Mallat, 1989; Livne and

Brandt, 2012; Greengard and Rokhlin, 1987), have been quite impactful in physics, biology

and other fields requiring large scale simulations. Applied math concepts such as Fourier and

wavelet transforms have transformed signal, image and audio processing not only because

they provide strong theoretical guarantees, but also because these transforms can be very

efficiently computed in practice. Similar tools for processing less structured data arising in

machine learning, such as matrices and graphs, would allow for more efficient computations

in many of the above mentioned matrix and graph applications. While the idea of perform-

ing multiresolution analysis on a graph is not new (Coifman and Maggioni, 2006; Hammond

et al., 2011; Chen and Maggioni, 2011; Allard et al., 2012), Multiresolution Matrix Factor-

ization (Kondor et al., 2014; Teneva et al., 2016; Kondor et al., 2015a,b) is based on the

key and novel observation that performing multiresolution analysis on a graph is equivalent

to performing a matrix factorization of its graph Laplacian (or an analogous type of matrix

encoding of the graph). The subsequent works of Ong and Lustig (2016); Le Magoarou et al.

(2017); Malgouyres and Landsberg (2017) are among some of the notable advances in the

theory of graph and matrix transforms.

xiii

CHAPTER 1

PRELIMINARIES

1.1 Overview

In this chapter we introduce notation that we will use throughout the thesis. Chapter 2 begins

with an overview of concepts from classical harmonic analysis, such as Fourier transforms,

and quickly goes on to review the related idea of multiresolution analysis. The goal of this

chapter is to introduce key concepts and notation that we will often refer to in the rest of

the thesis. As the title of the thesis itself suggests, the work presented in this thesis is rooted

in multiresolution analysis and other related fundamental ideas of functional analysis.

Although Multiresolution Analysis, as defined by Mallat (Mallat, 1989), had a huge im-

pact on applied mathematics in the last couple of decades, there have only recently been

attempts to generalize this idea to discrete, unstructured cases, where the underlying repre-

sentation space is a graph or a nonlinear manifold. In Chapter 3 we investigate how classical

harmonic analysis ideas can be extended into ”signal processing on graphs”, a term coined

by Shuman et al. (2013a), and survey several multiresolution on graphs designs.

Chapter 4 reviews various types of multiscale/multilevel matrix factorizations. Some

of these factorizations are widely used in machine learning, while others, for the most part,

have originated from numerical linear algebra. Nevertheless, what connects these two groups

of factorizations is that they exploit some type of multiresolution, multiscale or multilevel

structure of the matrix at hand. Additionally, depending on the community they originate

from, some of these factorizations might not be typically described as matrix factorizations

per se, however, here we will certainly approach them from that perspective.

While the focus of Chapter 3 is on multiresolution analysis on graphs and Chapter 4

mainly covers the somewhat disparate subject of factorizing matrices, in Chapter 5 we bring

those two ideas together by introducing and defining the concept of Multiresolution Matrix

Factorization (MMF). The key insight behind MMF is the observation that multiresolu-

1

tion analysis on a graph, and more generally any symmetric matrix derived from a graph

(assuming the matrix exhibits a certain type of structure), is equivalent to a matrix factor-

ization obeying certain constraints. We present several algorithms for computing the MMF

of symmetric matrices and introduce multiresolution factorizability as an alternative to the

ubiquitous low rank assumption in machine learning and numerical linear algebra. This

chapter is based on the work originally published in (Kondor et al., 2014).

Classically, one of the most popular applications of wavelet and Fourier transforms is

for data compression. Analogously, in the matrix factorization setting, representing a given

matrix in some compact, compressed form would allow speeding up many downstream ap-

plications that the matrix is involved in (for example, matrix–vector product or matrix

inversion which are, of course, the key ”ingredients” of machine learning algorithm). Natu-

rally, in Chapter 6 we apply MMF for the compression of matrices derived from graphs (e.g.,

graph Laplacians and kernel matrices). Chapter 6 also describes various existing matrix

factorization techniques for compressing data matrices and demonstrates that, if used as a

compression tool, MMF beats existing state-of-the-art factorizations by a significant margin.

Chapter 7 presents a fast parallel MMF algorithm for computing the factorization of

large scale matrices and describes the rationale behind the resulting pMMF C++ library.

We demonstrate that pMMF is not only a viable compression tool in terms of its accuracy, but

also in terms of its computational efficiency. This chapter is based on the work published in

(Teneva et al., 2016) and (Kondor et al., 2015a), while the library documentation is publicly

available in (Kondor et al., 2015b).

1.2 Notation

Let [n] = {1,2, . . . , n}. The n dimensional identity matrix is denoted by In, unless n is

obvious from the context and we omit it, in which case we use I. The i–th row and j–th

column of a matrix M are denoted respectively Mi,∶ and M∶,j . ⊍ denotes the disjoint union

of two sets, so S1 ⊍ S2 ⊍ ⋅ ⋅ ⋅ ⊍ Sm = S is a partition of the set S. O(n) denotes the group of

2

orthogonal matrices of dimension n. Strictly speaking, this group consists of matrices that

correspond to pure rotations as well as matrices that correspond to rotations combined with

refections.

Submatrices. Given a matrix M ∈ Rn×m and two sequences of indices I = (i1, . . . , ik)

and J = (j1, . . . , j`), where I, J are subsets of [n], the submatrix MI,J denotes the matrix

M ∈ Rk×` consisting of the rows (i1, . . . , ik) and the columns (j1, . . . , j`) of M . The entry at

position (a, b) in MI,J will be denoted by [MI,J]a,b. Similarly, if we let P = {i1, i2, . . . , ik} ⊆

[n] and T = {j1, j2, . . . , j`} ⊆ [m] (assuming i1 < i2 < ⋅ ⋅ ⋅ < ik and j1 < j2 < ⋅ ⋅ ⋅ < j`) then

MP,T ∈ Rk×` with entries [MP,T]a,b =Mia,jb

Block diagonal matrices. Given M1 ∈ Rn1×m1 and M2 ∈ Rn2×m2 , M1 ⊕M2 is the

(n1 + n2) × (m1 +m2)–dimensional matrix with entries

[M1 ⊕M2]i,j =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

[M1]i,j if i ≤ n1 and j ≤m1,

[M2]i−n1,j−m1
if i > n1 and j >m1,

0 otherwise.

A matrix M is said to be block diagonal if it is of the form

M =M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mp (1.1)

for some sequence of smaller matrices M1,M2, . . . ,Mp. In this thesis we will generally mostly

deal with block diagonal matrices in which each of the blocks is square.

For the purposes of this exposition the ordering of the rows/columns of a block diagonal

matrix will be irrelevant, so we further relax (1.1) by removing the constraint that each block

must involve a contiguous set of indices and and introduce the concept of generalized block

diagonal matrices defined as

M = ⊕
(i11,i

1
2...,i

1
k1

)
M1 ⊕ (i21,i

2
2...,i

2
k2

)
M2 ⋅ ⋅ ⋅ ⊕ (ip1,i

p
2,...,i

p
kp

)
Mp. (1.2)

3

Each of the entries of a generalized block diagonal matrix M is then given by

Ma,b =

⎧⎪⎪
⎨
⎪⎪⎩

[Mu]q,r if iuq = a and iur = b for some u, q, r,

0 otherwise.

We may sometimes abbreviate expression (1.2) by dropping the first ⊕ operator and its

indices. The reason for this is that (i11, i
1
2 . . . , i

1
k1

) is fully determined by the other index

tuples, assuming i11 < i
1
2 < ⋅ ⋅ ⋅ < i

1
k1

.

Tensor products. Given M1 ∈ Rn1×m1 and M2 ∈ Rn2×m2 , the tensor (sometimes called

Kronecker) product matrix M1⊗M2 is an n1n2 ×m1m2 matrix whose elements are

[M1 ⊗M2](i1−1)n2+i2, (j1−1)m2+j2
= [M1]i1,j1 ⋅ [M2]i2,j2 ,

with the obvious generalization to k–fold products M1⊗M2⊗. . .⊗Mp. We will sometimes use

the multi-index notation MI,J to denote the individual entries of such products, specifically,

MI,J = [M1]i1,j1 ⋅ [M2]i2,j2 ⋅ . . . ⋅ [Mk]ip,jp , (1.3)

where I = (i1, . . . , ip) ∈ [n1] × [n2] × . . . × [np] and J = (j1, . . . , jp) ∈ [m1] × [m2] × . . . × [mp].

We define M⊗p as the p–fold product M ⊗M ⊗ . . .⊗M .

4

CHAPTER 2

FOURIER AND MULTIRESOLUTION ANALYSIS

This chapter is intended as a preamble and the concepts introduced here are key to un-

derstanding the rationale behind the topics of Chapters 3 and 4, as well as the inspiration

behind Multiresolution Matrix Factorization. We review key functional analysis concepts,

such as the Fourier transform, wavelets and multiresolution analysis, for functions on the

real line as well as the intricacies and challenges involved in the translation of these ideas to

the discrete setting.

2.1 Classical Fourier Transform

The problem which initiated the study of Fourier analysis is whether a function can be rep-

resented as a sum of simpler periodic functions. More specifically, Fourier series is motivated

by the idea of breaking down complex periodic functions on the unit circle into a sum (or

integral) of “waves”, which are represented by sine and cosine functions. This idea can be

extended relatively easily from periodic functions on the unit circle to periodic functions on

the real line. Somewhat more miraculously, the idea of representing a function as a sum

of waves is applicable not just to periodic integrable functions on the real line, but also to

nonperiodic integrable functions on the real line (see (Stein and Shakarchi, 2011) for review).

The classical Fourier transform is defined on the space of periodic functions on the

real line with period 2π (which are equivalent to functions on the unit circle) as

f̂(k) =
1

2π

2π

∫

0

e−ikxf(x)dx, k ∈ Z, (2.1)

or nonperiodic functions on the real line as

f̂(k) = ∫ e−2πikxf(x)dx, k ∈ R, (2.2)

5

where i ∶=
√
−1 is the imaginary unit. For each k, e−2πikx is a periodic function with

frequency k. Note that the Fourier transform of periodic functions is known as Fourier

series.

The values f̂(k) in (2.1) and (2.2) are called, respectively, Fourier series coefficients

and Fourier coefficients. The motivation for this naming convention comes from the fact

that these values serve as coefficients in a formula which can recover the original function f .

The reconstruction of f is called the inverse Fourier transform. For the two cases above,

the corresponding inverse Fourier transforms are respectively

f(x) =
∞

∑
k=−∞

f̂(k) eikx,

f(x) = ∫ f̂(k) e2πikx dk. (2.3)

Intuitively, the k values can be thought of as the “frequency” and x values can be thought

of as the “time”, hence the representations f̂ and f are called the “frequency domain” and

the “time domain”, respectively. If the function f is smooth, then the Fourier coefficients

decay rapidly and so f can be closely approximated using just the first few low frequency

coefficients.

For functions on the real line, Euler’s identity eix = cosx + i sinx provides a nice con-

nection between these trigonometric functions and the complex numbers: the sums in (2.3)

can be interpreted, for a given k, as a weighted average of f with the complex exponentials

e2πikx as weights. Due to the derivations in (2.3) involving complex exponentials, the Fourier

coefficients are complex valued. Note that the the set of functions that can be recovered

from their Fourier transform is dense in L2(R).

When the function f is discrete, or if it is discretized on a finite set of cardinality n,

the integrals in (2.1) and (2.2) can be expressed as a finite sum, also called the discrete

6

Fourier transform (DFT)

f̂(k) =
n−1

∑
x=0

e−2πikx/nf(x), 0 ≤ k ≤ n − 1. (2.4)

with its corresponding inverse Fourier transform given by

f(x) =
1

n

n−1

∑
k=0

f̂(k) e2πikx/n. (2.5)

Another way to think of the discrete Fourier transform (2.4) is in terms of its matrix

form — it is equivalent to a linear transformation F ∶ Cn → Cn, and so

f̂ = Ff, (2.6)

where both the original function f and its transform f̂ are vectors in Cn, and the DFT

matrix F ∈ Cn×n. The rows of F contain the vectors forming the Fourier basis consisting of

the set {e−2πikx/n}k∈{0,1,..., n−1}. In other words, the Fourier transform f̂ is just f expressed

in a different basis. Multiplication of f by F on the left allows for an easy conversion between

the time and the frequency domain. The inverse DFT is given by F−1 and it allows for

switching back from the frequency domain to the time domain (i.e., the inverse operation of

(2.6)) as follows

F−1f̂ = F−1(Ff) = f. (2.7)

Note that, since the Fourier transform is unitary (at least with the convention used in (2.4)),

F−1 = F†.

2.2 From Fourier to Wavelets

Fourier analysis decomposes signals into different frequency components, but it does not

provide any information about the time at which these frequencies occurred. In particular, for

7

(a) (b)

(c) (d) (e)

Figure 2.1: Wavelet concepts and examples. (a) Fourier transform (right), windowed
Fourier transform (middle) and wavelet transform (right) phase planes with frequency k and
time x — unlike the Fourier transforms, the wavelet transform has different resolution levels.
(b) Discontinuities, such as those in the step function shown in black, induce a characteristic
pattern of spurious oscillations and over/underhoots in partial Fourier sums called the Gibbs
phenomenon. (c) Haar wavelet and scaling function. (d) Morlet wavelet. (e) Daubechies D2
wavelet and scaling function.

nonperiodic functions, computing the Fourier transform (2.2) would require us to integrate

over all times, x. The Fourier phase plane shown in the left panel of Figure 2.1(a) illustrates

this point — the sinusoidal waves in the Fourier transform are localized in frequency (k),

but global in time (x). As a result, if the frequency content of a signal f varies with time,

its Fourier transform does not detect any local time variations and so it cannot be used to

analyze nonstationary signals. In order to localize the exponentials in the Fourier transform

(2.2) in a certain neighborhood of the time domain, we can use an auxiliary function. Gabor

(1946) proposed using a symmetric window function g(t) = g(−t) defined as follows

gk,u(x) = e
ikxg(x − u), k, u ∈ R,

8

where u is a translation parameter and ∣∣g∣∣2 = 1. One function that can serve as a window

is, for example, a Gaussian, in which case the resulting transform is called Gabor transform

(Gabor, 1946; Mallat, 2008).

Using the translation of the window g in both time and frequency, we can define the

windowed Fourier transform, analogously to the Fourier transform (2.2). For a square

integrable function on the real line f ∈ L2(R) the windowed Fourier transform is

Sf(k, u) = ⟨f, gk,u⟩ = ∫ f(x) g(x − u) e−ikxdx, k ∈ R, (2.8)

where the multiplication by the translated window essentially localizes the Fourier integral

in the neighborhood of u. The original function can then be recovered by

f(x) =
1

2π ∫ ∫ Sf(k, u) g(x − u) eikxdk du. (2.9)

The windowed Fourier transform finds applications in many signal processing tasks, such

as music and speech recognition, where frequencies vary with time. Yet, it is not appropriate

for signals which have short durations of high frequency events, for example, signals arising in

seismology or molecular dynamics. As illustrated in the middle panel in Figure 2.1(a), this is

due to the observation that as the frequency parameter k increases, the transform translates

in frequency, but always by the same width — in other words, it lacks resolution. A transform

which has different levels of resolution, would be better suited to capture the short–lasting

high frequency and long–lasting low frequency parts of a signal. This type of transform is

called a wavelet transform and its phase plane is shown on the right panel of Figure 2.1(a).

Starting at the beginning of the 80’s, the wavelet transform and multiresolution ideas, which

we discuss in Section 2.4, were formalized by Gabor, Morlet and Grossman, among others

— see (Mallat, 2008) for a historical review.

9

2.3 Smoothness

One of the central questions of harmonic analysis is how to filter the space of functions

on a space X into a nested sequence of spaces according to their smoothness. Before we

explain how these nested spaces can be constructed in the next section, we will first define

smoothness and, in particular, what it means depending on the type of the starting space

X.

If X is a Euclidean space or a differentiable (smooth) manifold, which often is the un-

derlying assumption for a lot of problems arising in machine learning, the smoothness of

f ∶ X → R may be defined in terms of the Laplace operator or the Laplace–Beltrami opera-

tor, respectively.

For functions defined on Euclidean space, for example, when X = Rd, the Laplace oper-

ator, or the Laplacian, is a second order differential operator

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+ ⋅ ⋅ ⋅ +
∂2

∂x2
d

, (2.10)

which can be applied to a function f ∶X → R in d–dimensional Euclidean space as follows

∆f =
∂2f

∂x2
1

+
∂2f

∂x2
2

+ ⋅ ⋅ ⋅ +
∂2f

∂x2
d

.

As a side note, the Laplacian comes up in many applications in physics in the form of the

Laplace equation ∆f = 0.

Going back to the general form of the Laplace operator (2.10), we can quantify the

smoothness of f by considering the ratio

η =
⟨f,∆f⟩

⟨f, f⟩
, (2.11)

where ⟨⋅, ⋅⟩ is the inner product. If the ratio (2.11) is small, we say that the function f

is smooth. Intuitively, this is equivalent to saying that, when applied to f , the Laplace

10

operator does not change it too much.

In differential geometry, the counterpart of (2.10) is the Laplace–Beltrami operator

∆ =
1

√
∣det(g)∣

d

∑
i,j=1

∂

∂xj

√
∣det(g)∣ gij

∂

∂xi
, (2.12)

which is just a generalization of the Laplace operator to functions defined on d–differentiable

manifolds with a metric tensor g (the metric tensor is a generalization of the Euclidean

dot product to manifolds). Smoothness is measured analogously to (2.11), except that the

Laplace–Beltrami operator is used instead.

In the discrete setting, when X is the vertex set of a finite simple graph on n vertices,

the smoothness of f is defined in terms of the discrete, graph analog of the Laplace operator,

called the graph Laplacian L, which is a symmetric matrix of a certain form (see Section

2.5 for details). In this case (2.11) simplifies to η =
⟨f,Lf⟩
⟨f,f⟩

.

Another way to think about function smoothness, without involving differentiation, is

based on defining the semigroup {Aα}α∈[0,+∞) of positive semi-definite smoothing operators.

A natural choice for Aα is the diffusion operator. When applied to a function f on Rd, the

diffusion operator takes the form

(Aαf)(y) = (2πα)d/2∫ f(x) e−2π∣∣x−y∣∣2/α dx. (2.13)

Aα has exactly the opposite effect to that of ∆ in the sense that Aα tends to smooth functions

while ∆ tends to roughen them. So, in contrast to (2.11), here we expect the ratio
⟨f,Aαf⟩
⟨f,f⟩

to be large. On Euclidean spaces, differentiable manifolds and graphs, the diffusion operator

and the Laplacian share the same system of eigenvectors (specifically, in the case of the

diffusion operator Aα = e−α∆) so the Laplacian and diffusion based approaches to harmonic

analysis are equivalent.

11

2.4 Classical Multiresolution Analysis

Fourier analysis filters the space of square integrable functions L2(X) defined on R according

to smoothness by explicitly constructing an orthogonal basis of eigenfunctions of the ∆,

L or Aα operators. In this case, however, the eigenvectors, while perfectly localized in

frequency, (i.e., corresponding to a single eigenvalue of ∆ or Aα) are not at all localized

in the spatial domain due to the fact that the Fourier transform (discrete or continuous)

is constructed as superpositions of dilations of the function g(x) = e−ix. Wavelets, on the

other hand, are designed to capture information both in the frequency and in the time

(space) domain and so a function in L2(X) could be better represented by wavelet series

expansion in an orthonormal basis generated by the dilation and translation of a wavelet

function. Wavelets can not only separate a signal f into components at different levels

of resolution, but can also differentially resolve different parts of f at different levels of

detail. This is because, in contrast to the global nature of Fourier eigenvectors, wavelets

follow a ”what is local must stay local” philosophy, in the sense that the high frequency

basis functions, meant to capture the local behavior of f , have small support, and hence

do not interact with parts of f that are far away. The concrete problem that sparked

the development of the modern theory of wavelets in the early 1980’s was the need to

accurately model functions, specifically seismological signals consisting of a combination of

long smooth segments and sudden discontinuities (Morlet, 1983). Fourier analysis and band–

limited functions are ideally suited for decomposing smooth functions. If the function f being

approximated is continuous, then the inverse Fourier transform (2.3) converges uniformly to

f(x) as more Fourier series coefficients are added. However, if f is discontinuous, then

(2.3) converges pointwise, nonuniformly and as a result, displays a characteristic pattern of

over/undershoots, even when a large number of coefficients are used. This pattern is known

as the Gibbs phenomenon, shown in Figure 2.1(b).

The theoretical foundation of wavelets is Multiresolution analysis (MRA) which, as

an alternative to Fourier analysis, decomposes the space L2(X) into a wide range of scales

12

L2(X) // ⋯ // V0
S1 //
D1

%%

V1
S2 //
D2

%%

V2
S3 //
D3

&&

⋯

W1 W2 W3

Figure 2.2: MRA. Multiresolution analysis repeatedly splits the function spaces V0, V1, . . .
into a smoother part V`+1 and a rougher part W`+1. S` and D` denote the scaling and the
detail transform, respectively.

by constructing a nested sequence of subspaces

L2(X) ⊃ . . . ⊃ V−1 ⊃ V0 ⊃ V1 ⊃ V2 ⊃ . . . ⊃ {0} (2.14)

of increasing smoothness. Each V` is split into a smoother (or low frequency) part V`+1

and rougher (or high frequency) part W`+1 (Figure 2.2). In the sequence of subspaces, the

smaller ` is, the shorter the length scale over which functions in V` vary. In other words, if

k > `, the space resolution 2` of the `–th subspace is higher than the resolution 2k of the

k-th subspace. We will refer to each of the subspaces V` as a level of resolution.

Mallat (1989) proposed defining MRA on L2(R) (i.e., X = R) as a sequences of embedded

spaces using the following axioms

A1. ⋂` V` = {0}, i.e., when the resolution decreases to zero, the approximation signal

contains less and less information and converges to zero.

A2. ⋃` V` is dense in L2(R), i.e., when the resolution increases to infinity, the approx-

imation signal contains more and more information.

A4. Translation invariance of V`: f ∈ V` ⇐⇒ f ′(x) = f(x − 2`m) ∈ V`, for all m ∈ Z.

A4. Dilation property: f ∈ V` ⇐⇒ f ′(x) = f(2x) ∈ V`−1.

A5. There exists a function φ(x) such that {φ(x −m)}m∈Z is an orthonormal basis

(and more generally a Riesz basis) for V0. This property is key for the construction of

a basis for each of the V` subspaces.

13

A direct consequence of the existence of a so-called “father” wavelet φ, as specified by axiom

A5, is the observation that V` is spanned by an orthonormal basis of the form

Φ` = {φ`m(x) = 2−`/2φ(2−`x −m)m∈Z}. (2.15)

However, the totality of all these orthonormal bases, consisting of the set

{φ`m(x) = 2−`/2 φ(2−`x −m)}m,`∈Z ,

is not an orthonormal basis for L2(X) because the approximation subspaces V` are not

mutually orthogonal. In order to avoid this problem, we define the wavelet detail subspace

W` to be the orthogonal complement of V` in V`−1. In other words,

V` =W`+1⊕V`+1, (2.16)

where ⊕ denotes the direct sum of mutually orthogonal subspaces. For an approximation

subspace at a particular level of the hierarchy, w.l.o.g let that subspace be V0, and `′ levels

of resolution, it follows that V0 = V`′ ⊕ (⊕`′

`=0W`). As `′ → ∞, it follows from the MRA

axioms A1 and A2 above that

L2(X) =⊕
`∈Z

W` ,

which means that if a function belongs to a set of functions which is dense in L2(X), it can

be expressed as a sum of functions in the orthogonal detail subspaces W`.

It can be further shown that the scaling function φ determines the “mother” wavelet ψ

such that {ψ(x−m)}m∈Z is an orthonormal basis of W0. Similarly to the way {φ(x−m)}m∈Z

can be used to construct an orthonormal basis for some V` in (2.15), it can be shown that

W` is spanned by an orthonormal basis

Ψ` = {ψ`m(x) = 2−`/2 ψ(2−`x −m)m∈Z}. (2.17)

14

Various alternatives have been proposed for ψ, including the simplest and earliest wavelet,

the Haar wavelet, shown in Figure 2.1(c). One of the disadvantages of the Haar wavelet

is that it has discontinuities, which renders it unsuitable for a basis for smooth functions.

Instead, many other smoother wavelets are used in practice — classical smooth wavelets

include those named after Meyer and Morlet (Figure 2.1(d)), and the famous Daubechies’

wavelets (Daubechies, 1988), shown in Figure 2.1 (e), which have the property of being both

compactly supported and having a fixed number of vanishing moments (see (Mallat, 2008;

Daubechies, 1992) for an overview). However, in general, ψ is chosen as a function that is

fairly narrow in the frequency domain (therefore, is wave–like) and localized in time (space).

The higher ` is, the more (2.17) dilates the mother wavelet ψ, and so ψ`m becomes smoother.

Unlike in the Fourier transform, however, the high frequency (i.e., low `) wavelets are also

very narrow, so they only contribute to describing f in a small neighborhood. In contrast

to (2.3), here the scale parameter ` is discrete. There is an alternative approach to wavelets

based on the so-called continuous wavelet transform, where the levels form a continuum.

The corresponding theory has deep roots in harmonic analysis, but it computationally less

attractive as the wavelet frames that it leads to are highly overcomplete.

The Vj subspaces can be used to approximate general functions by defining projections

onto these subspaces. Since the union of all Vj is dense in L2(X), it is guaranteed that

any function in L2(X) can be approximated arbitrarily close by such a projection. Let P`f

denote the orthogonal projection of f onto V`, i.e.,

PV`f = ∑
m∈Z

⟨φ`m, f⟩φ
`
m. (2.18)

Note that P`f is the best approximation of f in the subspace V`. From (2.16) is follows that

a function f ∈ V` can be expressed as the sum f = PW`+1
f +PV`+1f . In turn, after applying

(2.16) to PV`+1f , it decomposes into PV`+1f = PW`+2
+ PV`+2f , leading to f = PW`+1

f +

PW`+2
f +PV`+2f , and so on until after t levels f = PW`+1

f +PW`+2
f + ⋅ ⋅ ⋅ +PW`+t

f +PV`+tf . If

15

we let f ∶X → R be a function residing at a particular level of the hierarchy, w.l.o.g. f ∈ V0,

then its wavelet transform is

f(x) = (
∞

∑
`=1

PW`
+PV∞)f(x)

=
∞

∑
`=1
∑
m

⟨f,ψ`m⟩ψ`m(x) +∑
m

⟨φ∞m , f⟩φ
∞
m(x), (2.19)

For computational tractability we truncate the sum in (2.19) to the first L terms so f can

be reconstructed by

f(x) =
L

∑
`=1
∑
m

⟨f,ψ`m⟩ψ`m(x) +∑
m

⟨f, φLm⟩ φLm(x). (2.20)

The representation of f in the form (2.20) is called wavelet transform. Note that the sum

(2.20) consists of L different levels of ”detail”, expressed using the wavelet bases, and a rough

part, expressed using the scaling function. Algorithmically, the coefficients a`m = ⟨f,ψ`m⟩ and

dm = ⟨φLm, f⟩ can be efficiently calculated using schemes which ensure that the S` ∶ V` →

V`+1 scaling transforms and the D` ∶ V` → W`+1 detail transforms are sparse, resulting in

increasingly sparse wavelet basis at increasing resolution of the MRA.

Two of the main applications of wavelets in signal processing are signal compression

and signal denoising. Signal compression is effectively an approximation of a signal f

with as little data as possible. Using a wavelet transform with L levels of multiresolution,

compression can be performed by retaining the scaling function part (i.e., zeroing out the

first sum in (2.20)) and computing

f(x) =∑
m

⟨f, φLm⟩ φLm(x). (2.21)

Note that in the Fourier transform case the function approximation (2.5) is linear (as the

basis elements do not depend on the function). Similarly, the wavelet approximation of the

form (2.21) is linear, however unlike the Fourier basis, the wavelet basis is adaptive to the

16

function f . Thus, by applying wavelet coefficient thresholding or wavelet shrinkage (see

(Mallat, 2008) for details) wavelets can be used for nonlinear function approximation. On

the other hand, signal denoising deals with removing noise, which is typically concentrated at

the finer scales (at higher wavelet frequencies). The easiest approach is to discard the detail

subspaces after a certain level, however, this also removes the features of the signal encoded

in those finer scales, so in practice various thresholding techniques are applied instead (see

(Mallat, 2008)).

2.5 Spectral Graph Theory Concepts

Recall from Section 2.3 that one of the ways to define smoothness of a function is by applying

the Laplace operator to it and measuring the ratio (2.11). However, the Laplace operator

defined in (2.10) applies only to continuous functions. The discrete Laplace operator is the

discrete analog of the continuous Laplace operator, defined for discrete spaces such as graphs.

The graph Laplacian, which we mentioned earlier, and the normalized graph Laplacian, are

the two most widely used ways to define the discrete Laplace operator.

Let G(V,E) denote an unweighted, undirected graph containing no graph loops or mul-

tiple edges, where V and E denote the vertex and the edge set, respectively. The discrete

Laplace operator can be defined for graphs in the form of the graph Laplacian (also some-

times called combinatorial graph Laplacian), which is L ∶= D − A for unweighted graphs,

and L ∶= D −W for weighted graphs. Here D denotes the degree matrix of G, which is zero

everywhere except on its main diagonal. For unweighted graphs, Di,i equals the number of

edges incident on vertex i (denoted by deg (i)), while for unweighted graphs Di,i is the sum

of the weights of all the edges incident to i for weighted graphs. A is the adjacency matrix,

which is a binary matrix in which Ai,j = 1 if vertices i and j are connected by an edge. W

is the weight matrix with Wi,j representing the weight of edge i, j. Thus, for an undirected,

unweighted graph, the graph Laplacian has entries

17

Li,j ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−1 if i, j are adjacent

deg(i) if i = j

0 otherwise.

(2.22)

The normalized graph Laplacian (Chung, 1997), which is a normalized version of L

(2.22), is given by L̃ ∶= D−1/2LD−1/2. In other words, L̃ is derived from L by normalizing

each edge by the square root of the degrees of its end vertices. L̃ is given entry-wise is given

by

L̃i,j ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if i = j and Di,i /= 0

−1/
√
deg(i) deg(j) if i /= j and i, j are adjacent

0 otherwise.

(2.23)

Note that both the graph Laplacian L and the normalized graph Laplacian have a full set

of orthonormal eigenvectors since they are real symmetric matrices. The eigenvalues of both

the graph Laplacian and the normalized graph Laplacian are bounded from below by 0. In

the case of the graph Laplacian L the eigenvector associated with the zero eigenvalue is

constant. In addition, the eigenvalues of the normalized Laplacian L̃ are contained in the

interval [0,2].

When analyzing functions on graphs, which can be represented simply by a vector f ∈

R∣V ∣, it is important to remember that measuring function smoothness is always with respect

to the intrinsic structure of the graph, which is given by G. Often the graph Laplacians arise

from a discrete sampling of a smooth manifold and so, if the density of the sampling is high

enough, under certain assumptions about the sampling probability distribution the discrete

Laplacian converges to its continuous counterpart at a certain rate (additional detail can be

found in (Belkin and Niyogi, 2008; Hein et al., 2005) and the reference cited therein). The

edge derivative of a function f = Rn at vertex i, with respect to some edge e, is
∂f(i)
∂e . So the

18

graph gradient of f at vertex i, with incident edges Ni = {e1, e2, . . . , ep}, is just the vector

γi = [
∂f(i)

∂e1
,
∂f(i)

∂e2
, . . . ,

∂f(i)

∂ep
] , (2.24)

and so the local variation of f at vertex i can be measured by the `2 norm of (2.24).

Accordingly, the global variation of f with respect to all the vertices of G is then given by

1

2
∑ ∣∣ γi ∣∣

2
2 =

1

2
∑
i∈V

∑
j∈Ni

Wi,j(f(i) − f(j))
2. (2.25)

Generalization of (2.25) to other `p norms is provided in (Shuman et al., 2013a).

Expressing equation (2.25) in vector form leads to the so-called graph Laplacian quadratic

form (Spielman, 2009)

f⊺Lf = ∑
(i,j)∈E

Wi,j(f(i) − f(j))
2 (2.26)

=
1

2
∑
i∈V

∑
j∈Ni

Wi,j(f(i) − f(j))
2. (2.27)

Intuitively, the quadratic form can be used for measuring the graph smoothness of f , since

it will be small if the function does not ”jump” too much at the two endpoints of any edge

of G. For example, if f is constant on all vertices, the quadratic form will be 0. In general,

the quadratic form is small if for any pair of vertices i and j connected by an edge with

high weight, the values of f at those vertices have similar weights (i.e., fi and fj are both

positive or both negative). In fact, when a situation like this arises, we say that the graph

signal f is smooth. Analogously to the inner product ⟨f,∆f⟩ in (2.11), the quadratic form

(2.26) can be expressed as f⊺Lf = ⟨f,Lf⟩ 1.

The graph Laplacian is one of the central subjects of spectral graph theory, which is the

study of the principal properties and structure of graphs from the eigenspectrum of matrices

1. In general, the inner product between two vectors f and g is defined as ⟨f, g⟩ = ∫ f(x) g(x) dx, but if
f and g are finite vectors, the integral is discretized by their dot product ⟨f, g⟩ = f⊺g

19

associated with them (Chung, 1997). Expanding a function defined on a graph using the

eigendecomposition of a matrix derived from it is precisely the graph equivalent of expanding

a function on the real line using its Fourier transform — in this sense spectral graph theory

amounts to performing Fourier analysis on graphs. In the following section we discuss the

graph analog of the Fourier transform on the real line. Further details on spectral graph

theory can be found in the seminal works by Chung (1997) and Spielman (2009), while

Shuman et al. (2013a,b) provide an overview of spectral graph theory as a form of Fourier

analysis on graphs.

2.6 Spectral Fourier Transform

Since the graph Laplacian L, as defined in (2.22), is a real positive definite symmetric

matrix, it has n orthonormal eigenvectors {q`}0≤`≤n−1 with their corresponding eigenvalues

{λ`}0≤`≤n−1 being real and nonnegative. We can assume that the eigenvalues are ordered

0 = λ0 < λ1 ≤ ⋅ ⋅ ⋅ ≤ λn−1 ∶= λmax, where λ0 = 0 is an eigenvalue with multiplicity equal to the

number of connected components in the graph.

Recall from Section 2.1 that on the real line the discrete Fourier transform is

f̂(k) ∶=
n−1

∑
j=0

e−2πijk/nf(j), 0 ≤ k ≤ n − 1,

where i ∶=
√
−1 is the imaginary unit and both f̂ and f are represented as vectors in Cn.

f̂ is the expansion of a function f in terms of the complex exponentials e2πijk, which are

the eigenfunctions of the one–dimensional Laplace operator d2

dx2
(i.e., the Laplace operator

defined in (2.10) in the specific case when d = 1). The spectrum of the Laplace operator

consists of all eigenvalues λ for which there is a corresponding eigenfunction q such that

−∆q = λq. In this specific case q = e2πijk and so

−
∂2

∂k2
e2πijk = (2πk)2 e2πijk. (2.28)

20

In analogy to the real line case, the graph Fourier transform f̂ of a function f ∈ Rn

defined on the vertices of the graph is an expansion of f in terms of the eigenvectors of L

and is given by

f̂(λ`) ∶= ⟨f, q`⟩ =
n−1

∑
i=0

q∗` (i) f(i). (2.29)

The inverse graph Fourier transform is then given by

f(i) =
n−1

∑
`=0

f̂(λ`) q`(i). (2.30)

A more detailed analysis and illustrations of the graph Fourier transform and its inverse are

provided by Shuman et al. (2013a).

In classical Fourier analysis the eigenvalues {(2πk)2}k∈R in (2.28) have a specific meaning

of frequency in the sense that for k close to zero (low frequencies) the associated complex

exponential eigenfunctions are slowly oscillating (smooth) functions and they carry informa-

tion about global behavior. On the other hand, when k is far from zero (high frequencies),

the associated complex exponential eigenfunctions oscillate much faster and reflect local

variations of the function. Analogously, in the graph Fourier transform the graph Laplacian

eigenvalues and eigenfunctions provide a similar notion of frequency. We will refer to the

space of eigenfunctions of the discrete graph Laplacian L as the graph spectral domain.

For connected graphs the Laplacian eigenvector q0, with its corresponding eigenvalue λ0 = 0,

is constant with entries equal to 1/
√
n (for fully disconnected graphs the eigenvalues are

all zero). The graph Laplacian eigenvectors q` associated with the low frequencies λ` are

smooth in the sense that if two vertices in the graph are connected by an edge with large

weight, the entries of the eigenvector corresponding to those vertices are likely to have similar

values. The eigenvalues associated with the large eigenvalues, on the other hand, oscillate

much faster (high frequencies) and the entries corresponding to vertices in the graph that

are connected by an edge with large weight are likely to be dissimilar.

Note that effectively (2.29) and (2.30) can be used to represent a signal f ∈ Rn in two

21

different domains — the vertex domain (i.e., f is defined on the vertices of the graph with

graph Laplacian L) or the spectral domain (i.e., f can be constructed in the form (2.30)

using the eigenvalues and eigenvectors of L). For a wide range of signals on the real line

wavelet transforms are preferable to Fourier transforms since their different levels of res-

olution localize signals in both time and frequency. Similarly, a graph wavelet transform

should be able to localize a signal f defined on its vertices both in the vertex and graph

spectral domains. In the following chapter we review several examples of wavelet designs

for graphs, some of which are defined in the spectral domain, while other are defined in

the vertex domain. In the classical wavelets setting there is a tradeoff between time and

frequency resolution (generally knowns as the Heisenberg uncertainty principle, originating

from physics (Gabor, 1946)). It is still an open question whether such a tradeoff exists in the

graph wavelet scenario. For generalization of uncertainty principles to the graph setting see

the recent work by Perraudin et al. (2016); Tsitsvero et al. (2016); Pasdeloup et al. (2015).

2.7 Multiresolution on Discrete, Unstructured Spaces

Both a signal on a graph with n vertices and a discrete–time signal with n samples can be

viewed as vectors in Rn. In other words, in this case X is a space of finite cardinality n,

and so V0 = L2(X) = Rn (recall the nested sequence of subspaces in (2.14)). While in the

classical case of multiresolution on the real line, operations such as translation and dilation

are both intuitive and mathematically well defined notions, they cannot necessarily be easily

applied to irregular domains such as graphs. For example, it is not immediately obvious what

“translating” and “dilating” a graph signal means. A naive way to translate a function on

the vertices of the graph might be to number the vertices, however this numbering/ordering

is arbitrary and it is not shift–invariant. At the same time the overarching idea of a sequence

of sparse unitary transforms U`∶V` → V`+1⊕W`+1 that successively split spaces of function

on X into smoother and rougher parts carries through from the real line to the discrete

setting. In order to derive the equivalent of Mallat’s axioms for the discrete, unstructured

22

case, we let the symmetric matrix A ∈ Rn×n play the role of the smoothing operator discussed

in Section 2.3. To construct a multiresolution on X, then one needs to construct a nested

sequences of subspaces

VL ⊂ . . . ⊂ V2 ⊂ V1 ⊂ V0 = L(X) = Rn, (2.31)

with dimensions 1 ≤ δL ≤ ⋅ ⋅ ⋅ ≤ δ1 ≤ δ0 = n, where each V` has an orthonormal basis Φ` ∶=

{φ`m}m∈Z and each W` has orthonormal basis Ψ` ∶= {ψ`m}m∈Z with V` =W`+1⊕V`+1 (recall

that dim(W`) = δ` − δ`+1) and Φ0 = {φ0
m = em}nm=1 (i.e., Φ0 the standard basis of Rn),

satisfying three conditions:

MRA1: The sequence (2.31) is a filtration of Rn in terms of smoothness with respect

to A in the sense that, if we let

η` = sup
v∈V`

⟨v,Av⟩ /∣∣ v ∣∣2, (2.32)

the sequence η0 ≥ η1 ≥ ⋅ ⋅ ⋅ ≥ ηL decreases sufficiently fast. Note that this is identical to

the definition of smoothness in (2.11).

MRA2: The wavelets are localized in the sense that if we let

µ` = max
m∈{1,...,δ`}

∣∣ ψ`m ∣∣0, (2.33)

(where ∣∣ ⋅ ∣∣ denotes the vector `0 norm, i.e., the number of nonzero elements), the

sequence µ0 ≥ µ1 ≥ ⋅ ⋅ ⋅ ≥ µL increases no faster than a certain rate.

MRA3: Letting U` be the matrix form of the orthogonal transform taking the basis

23

Φ`−1 to the basis Φ` ∪Ψ`, i.e.,

φ`m =

δ`−1
∑
i=1

[U`]m,i φ
`−1
i , m = {1, . . . , δ`},

ψ`m =

δ`−1
∑
i=1

[U`]m+δ`−1,i φ
`−1
i , m = {1, . . . ,dim(W`)}, (2.34)

each U` is sparse, guaranteeing the existence of a fast wavelet transform.

To what extent it is possible to simultaneously satisfy these three conditions, of course,

depends on the operator A. In particular, while MRA3 automatically promotes some de-

gree of sparsity as required by MRA2, the first two conditions are in conflict with each

other for Heisenberg uncertainty relationship type reasons (Nahmod, 1994). In this sense,

multiresolution analysis is always a balance between opposing forces.

24

CHAPTER 3

MULTIRESOLUTION DESIGNS FOR DISCRETE SPACES

While in the last couple of decades harmonic analysis has been widely used in signal pro-

cessing and in regression analysis in statistics (Hardle et al., 1998; Vidakovic, 1999), it has

only recently been applied to problems pertaining to high–dimensional Euclidean data or

non-Euclidean data such as graphs. Just like classical wavelet transforms, which are de-

signed to localize signals in both time (space) and frequency, wavelet transforms on graphs

are designed with a similar goal in mind. There are two main types of ways of defining

wavelets on graphs (see (Shuman et al., 2013a) and the references cited therein for a detailed

review):

• spectral domain designs utilize precisely the spectral properties (i.e., information

encoded in the eigendecomposition) of matrices defined on graphs (such as the (nor-

malized) graph Laplacian or the adjacency matrix). Generally, graph spectral designs

construct bases that are localized in both the vertex and the graph spectral domains

Two notable example of spectral domain designs are Diffusion Wavelets (Coifman and

Maggioni, 2006) (Section 3.1) and Spectral Graph Wavelets (Hammond et al., 2011)

(Section 3.2). Diffusion wavelets are based on the compressed representations of the

powers of a diffusion operator. The basis functions at each resolution level are obtained

through a Gram–Schmidt orthogonalization scheme. Spectral graph wavelets are dila-

tions and translations of a kernel function defined in the spectral domain of the graph

Laplacian.

• vertex domain designs are based on the spatial features of the graph itself, such

as the distance between the graph nodes or the connectivity of the graph. The idea

here is to localize the vertex domain transform by filtering some k–neighborhood of

vertices around a given vertex based on some distance metric without relying on the

spectral properties of the graph. For example, the ”wavelets on trees” design by Gavish

25

et al. (2010), which is reviewed in Section 3.3, is a notable example of this approach.

Wavelets on trees are constructed by first fitting a balanced hierarchical tree (similar to

the type of three obtained by agglomerative clustering) on a set of data points (using

some pairwise distance metric) and then defining orthonormal bases for the space of

functions over the hierarchically nested subtrees of the tree.

In this chapter we closely follow the material presented in (Coifman and Maggioni, 2006;

Mahadevan and Maggioni, 2006; Hammond et al., 2011; Gavish et al., 2010; Lee et al., 2008),

changing the notation for consistency, if necessary.

3.1 Diffusion Wavelets

Recall from our discussion at the end of Section 2.3 that one of the ways of defining smooth-

ness is with respect to the diffusion operator A = e−α∆. The Diffusion Wavelets (DWs)

method (Coifman and Maggioni, 2006, 2004; Maggioni, 2005) uses the diffusion operator

A = e−αL (the Laplace operator ∆ is now replaced by its graph analog, the graph Laplacian

L of a finite weighted graph X on n vertices) to induce a multiresolution analysis. DWs

interpret the powers of A as smoothing operators acting on functions and construct a down-

sampling scheme to efficiently represent the multiscale structure. The goal is to efficiently

compute the powers of A2j (where 0 ≤ j ≤ J for some level/scale J), which describe the long

term behavior of the diffusion process (or the random walk) on X. This yields a construc-

tion of scaling functions and wavelets at different levels. Below we follow the notation and

intuition described by Coifman and Maggioni (2006).

While classical wavelet analysis constructs multiresolution on X using the span of trans-

lations of a scaling function at a certain scale, DWs rely on the use of the span of all

eigenfunctions of A at a certain scale. Let ΛA = {λi}0≤i<n denote the eigenvalues of A,

ordered in decreasing order, and QA = {qi}0≤i<n their corresponding eigenvectors. Recall

that for any power t, the eigenvalues of At are given by {λti}0≤i<n. Using this observation,

26

we can threshold the spectrum ΛA and the eigenvalues QA by defining, respectively,

λA,j = {λi ∈ ΛA ∶ ∣λ2j+1−1
i ∣ ≥ ε} and qA,j = {qi ∈ QA ∶ λi ∈ λA,j}

for a threshold parameter ε. Letting Vj ∶= qA,j and V0 = L2(X), the sequence of subspaces

V0, V1, . . . , VJ is reminiscent of the way classical MRA (2.14) decomposes L2(X) — see

Section 4.3 in (Coifman and Maggioni, 2006) for details. Note that DWs do not satisfy the

MRA axioms described in Section 2.4, in particular, the crucial dilation property A4 is not

satisfied. Even though each subspace Vj has an orthonormal basis consisting of eigenfunctions

of A, these basis functions are generally highly nonlocalized. To get localized bases for each

of the Vj subspaces, DWs use an explicitly constructed downsampling scheme, starting with

the standard basis for the finest subspace V0 and constructing an orthonormal basis for each

subsequent coarser subspace {Vj}0<j≤J .

Starting by applying the diffusion operator A once to a space of test functions at the finest

scale j = 0, the scheme is based on the repeated application of the following procedure —

orthonormalize the columns of A20 to get a new, downsampled basis for its column space (up

to some precision), represent A in this compressed basis and then compute the next dyadic

power A21 on this compressed basis; on the next scale j = 1 repeat this procedure, and so

on for subsequent scales. In general, at scale j we obtain a compressed representation of

A2j acting on a family of scaling functions spanning the column space of A1+2+22+⋅⋅⋅+2j−1 , for

which we have a compressed orthonormal basis, and then apply A2j , locally orthonormalize

and compress the result to get the next coarser subspace.

In matrix form DWs can be interpreted as a multiscale orthogonalization procedure in

which the dyadic powers A2j are interpreted as smoothing operators acting on functions

in L2(X), while downsampling and translation of the wavelet basis are achieved by rank

revealing QR. Starting with the basis Φ0 ∶= In, which is just the identity matrix with the

basis vectors {δx}0≤x<n on its columns, DWs construct an orthonormal basis for the column

27

space of A20 = A by a Gram–Schmidt orthonormalization scheme. In matrix form this

amounts to finding the reduced rank revealing QR factorization of A,

A ≈ Q0R0, (3.1)

where Q ∈ Rn×p (p < n) has orthogonal columns and R ∈ Rp×n is upper triangular. Note that

in practice rank revealing QR is used to perform (3.1). Additional details on the various

types of QR decompositions can be found in (Trefethen and Bau III, 1997). The columns of

Q0 form an orthonormal basis Φ1 of scaling functions for the column space of A, written as

a linear combination of the initial basis Φ0. The basis functions of A2j+1 are computed using

only the lowest frequency basis functions of A2j since the high frequency ones are discarded

in the rank revealing QR procedure and so (3.1) can be interpreted as downsampling of V1.

The first dyadic power of A can then be expressed on the basis Φ1 as follows (using the

fact that the matrix A is symmetric)

A2 = AA∗ ≈ Q0 R0R
∗
0

²
≈Q1R1

Q∗0 ,

where A2 ∈ Rp×p is now a compressed matrix expressed in terms of the column space of the

first power of the diffusion operator A. By downsampling of R0R
∗
0 by reduced rank revealing

QR orthogonalization the second dyadic power of A can be further expressed on the bases

Φ1 and Φ2 as

A4 = A2A2∗ ≈ Q0Q1R1R
∗
1Q

∗
1Q

∗
0 .

Recursively this procedure continues up to the highest level J , where the 2J–th dyadic power

of A is given by the factorization

A2J ≈ Q0Q1 . . .QJ−1R
∗
J−1RJ−1Q

∗
J−1 . . .Q

∗
1Q

∗
0 .

28

Wavelet bases for the spaces Wj can be built analogously using the rank revealing QR by

factorizing IVj −Qj+1Q
∗
j+1, i.e., the orthogonal projection of the complement of Vj+1 into

Vj .

The main assumptions of diffusion wavelets are: (i) the underlying graph X is strongly

connected and local, i.e., each vertex is connected to only a small number of vertices; (ii) the

operator A is local in the sense that when applied to the Dirac delta function δx (where

x ∈X), the resulting Aδx has numerically small support; and (iii) the powers of the diffusion

operator A have low numerical rank, i.e., rank(A2j) < rank(A2j−1). DWs assume that the

powers of A are of low rank and as a result they can be efficiently represented on a small set

of basis vectors obtained by rank revealing QR at each level. However, for each higher level j

the operator A2j is no longer local in the original space X, but in the new, compressed space

obtained from performing QR decomposition on Rj−1R
∗
j−1. In many practical applications,

the main drawback of DWs is that in practice at each level the QR factorization destroys

the wavelet sparsity. The high frequency wavelets end up having a very wide support, which

is at odds with the very goal of constructing well localized wavelets. In the worst case, when

the diffusion operator is not of low rank, the running time of DWs is O(n3), however, by

exploiting the sparsity and low rank of the dyadic powers of the diffusion operator, it can be

reduced to O(n2 log2 n).

3.2 Spectral Graph Wavelets

While DWs represents an orthogonal wavelet transform, constructed by an explicit orthogo-

nalization procedure, Hammond et al. (2011) propose a continuous graph wavelet transform

— recall from Section 2.4 to in classical MRA continuous wavelets transforms have a con-

tinuous scale parameter `. They construct a wavelet transform of a function f ∈ Rn on

the n vertices of an arbitrary weighted graph G(V,E) by defining scaling functions and

wavelets using the graph Fourier transform (2.29). Their Spectral Graph Wavelet Transform

(SGWT) consists of one scaling function centered at each vertex and L wavelets centered at

29

each vertex (each one of them at a different scale).

Using the notation introduced in Section 2.6, we let L be the graph Laplacian of G

whose eigenvalues are {λ`}0≤`≤n−1 (w.l.o.g 0 = λ0 < λ1 ≤ ⋅ ⋅ ⋅ ≤ λn−1 ∶= λmax) and their

corresponding eigenvectors {q`}0≤`≤n−1. Letting Tg = g(L) ∶ L2(V) ↦ L2(V), be the so-

called Fourier multiplier, which acts on a given function f by modulating each Fourier mode

as

T̂gf(`) = g(λ`)f̂(λ`),

where f̂(λ`) is defined in (2.29). The continuous function g ∶ R+ ↦ R+ (also called kernel as it

is defined in the spectral domain) acts as a band–pass filter (i.e., g(0) = 0 and limx→∞ g(x) =

0) and satisfies certain admissibility conditions which guarantee that it is localized in the

spectral domain (see (Hammond et al., 2011) for details). Applying the inverse Fourier

transform yields

Tg f(x) =
n−1

∑
`=0

g(λ`)f̂(λ`)q`(x).

The spectral graph wavelet operator at scale t is then defined by T tg = g(tL). So a spectral

wavelet at scale t ∈ R+ which is localized at vertex vm ∈ V is given by

ψt,m(x) = T tg δm(x) =
n−1

∑
`=0

g(tλ`) q
∗
` (m) q`(x), 0 ≤m ≤ n − 1, (3.2)

where δm is the Dirac delta function located at vertex vm. In other words, for a given scale

t there are total of n wavelets, each centered at each of the n graph vertices. Dilation of

the wavelets is performed by the use of the scaling parameter t, while translation of the

wavelets at scale t is then effectively achieved by ”localizing” the wavelet operator in the

vertex domain of G. The number of scales L is a design parameter adapted to the upper

bound λmax of the eigenspectrum of L and is thoroughly described in (Hammond et al.,

2011). Note that despite the fact that the spatial domain for the graph is discrete, the scale

t is actually defined for any positive real number since the kernel g is continuous.

30

The scaling function is given by

φm(x) =
n−1

∑
`=0

h(λ`) q
∗
` (m) q`(x), (3.3)

where h(λ) ∶ R≥0 → R is a real valued kernel function which smoothes the low frequencies

(i.e., the eigenvalues of L close to 0). An example of such a kernel function is h(x) =

γ exp(−(x/(0.6λmin)
4), where γ is set such that h(0) has the maximum value of g and

λmin = λmax/K for a parameter of choice K. Note that the SGWT scaling function φ (despite

its name) differs from the scaling function introduced in Section 2.4, in the sense that φ is

not used to generate the SGWT wavelets themselves in contrast to the ”father”–”mother”

wavelet relationship in classical MRA. Constructed analogously to, but independently of, the

SGWT wavelets (3.2), the goal of the scaling functions (3.3) is simply to smoothly represent

the low frequency content on the graph. In a sense, the SGWT wavelets (3.2) represent

a band–pass filter (i.e., they focus on frequencies within a certain range), while the scaling

functions (3.3) are a low–pass filter (i.e., they focus on frequencies below a certain threshold)

geared towards capturing the low frequency content of f .

The wavelet coefficients Wf (t,m) can be directly derived by applying the wavelet oper-

ator to f

Wf (t,m) = ⟨ψt,m, f⟩ = (T tgf)(m) =
n−1

∑
`=0

g(tλ`) q
∗
` f q`(m)

=
n−1

∑
`=0

g(tλ`) f̂(λ`) q`(m),

(3.4)

where f̂(λ`) = ⟨f, q`⟩ (2.29) is the graph Fourier transform of f . Intuitively, the wavelet

coefficient Wf (t,m) provides a measure of the degree to which the wavelet ψt,m is present

in the signal f . At scale t the wavelet transform of f is given by

W t
f = [Wf (t,0),Wf (t,1), . . . ,Wf (t, n − 1)]

31

and so the entire transform W ∶ Rn → Rn(L+1) across all L scales t ∈ {t1, . . . , tL} is

W = [Wh;W t1
f

;W t2
f

; . . . ,W
tL
f

], (3.5)

where Wh = ⟨φm, f⟩ are the SGWT scaling coefficients computed using (3.3).

The naive way of computing the transform, by directly using equation (3.4), requires

explicit computation of the entire eigenvector decomposition of the graph Laplacian, which

is unfeasible for large matrices since even general purpose routines such as QR decomposition

have computational complexity of O(n3) in the worst case. In order to circumvent this

computational problem, Hammond et al. (2011) approximate the scaled generating kernel g

by a low order polynomial and so the wavelet coefficients at each scale can be computed as

a polynomial of L applied to the input signal f through matrix–vector multiplication.

The SGWT is overcomplete in the sense that there are more wavelets than vertices in

the graph — specifically, there are n(L+1) coefficients in the entire SGWT transform (3.5).

Ideally, at each scale one would want to subsample a collection of vertices which would

serve as wavelets centers in (3.2) instead of calculating all n wavelet coefficients at each

scale. However, how one can perform this subsampling in a meaningful way remains an

open question. On a regular graph the underlying geometric regularities can be used to find

appropriate subsampling, however, the more interesting and much more difficult question,

is how one can perform vertex subsampling on an irregular graph.

3.3 Multiscale Wavelets on Trees

Gavish et al. (2010) argue that current techniques in machine learning rarely exploit the

rich geometric structure of high dimensional and graph data. Many methods used to process

functions defined on undirected graphs are based on the graph Laplacian L (2.22), which is

usually a product of applying a similarity kernel. The global function smoothness w.r.t. the

graph is measured by the graph Laplacian quadratic form f⊺Lf (2.26). However, measuring

32

function smoothness using the quadratic form leads to ill–posed problems for semi-supervised

learning with high dimensional data as the number of unlabeled data grows to infinity (see

(Nadler et al., 2009) for details). Another problem is that eigenvector–based methods might

not be suitable for representing functions on graphs since basis vectors have global support

and become increasingly oscillatory, which leads to a restricted number of coefficients that

can be reliably calculated. Thus, it makes more sense to construct basis vectors which have

local (rather than global) support and to that end Gavish et al. (2010) rely on the underlying

geometry of the graph itself.

The proposed ”wavelets on trees” framework assumes that the geometry of the input

graph or high dimensional data can be captured by one (or many) hierarchical tree(s). The

exact method of hierarchical tree construction is not relevant, as long as the input dataset

X is equipped with such a tree T . The only requirement is that T is balanced. Let the tree

have L levels with ` = 0 denoting the root level and ` = L − 1 denoting the deepest level in

the tree, the level at which each datapoint x ∈X is a leaf node.

Let V = {f ∣ f ∶X → R} denote the space of all functions on X and let X`
k

denote the k–th

subtree (equivalently, the set of all leaves of the k-th subtree) of a tree rooted at some node

which resides on level `. Since the tree constructed from the data is balanced, the branching

factor at each node of T is bounded between some constants b and b̄. The tree representation

of the data induces a multiresolution analysis with an associated Haar–like wavelet basis.

In particular, if we let V` denote the spaces of functions constant on all subtrees at a given

level `, the approximation spaces can be defined as

V` = {f ∣ f ∶X → R, f is constant on all subtrees X`
j}.

So by construction V = V−L−1 ⊃ . . . ⊃ V−2 ⊃ V−1 ⊃ V0 and V` =W`+1⊕V`+1. This relationship

between the subspaces resembles the one we saw in classical MRA in Figure (2.2).

Consider a subtree X`
k

at level ` with two subtrees X`+1
i and X`+1

j , then there is a

33

zero–mean Haar–like function ψ
`,k
1 (see Section 4.4 for description of Haar wavelets) that is

supported only on these two subtrees and is piecewise constant on each of them. In general,

a subtree X`
k

with branching factor b gives rise to b − 1 Haar–like orthonormal (wavelet)

functions ψ
`,k
1 , ψ

`,k
2 , . . . , ψ

`,k
b−1

. More specifically, the first function ψ
`,k
1 is supported only on

the first two subtrees of X`
k
, the second function ψ

`,k
2 is supported on the first three subtrees

of X`
k
, and so on until the last wavelet ψ

`,k
b−1

is supported on all the b subtrees of X`
k
. For

each subtree X`
k

of T , there is one scaling function given by φ`,k = 1X`
k
, i.e., φ`,k is just the

constant function supported on the leaves of X`
k
. So at level ` = 0, the smoothest subspace

V0 is spanned by the scaling function φ0,1 which is just the constant function on the dataset

X (note that X is equivalent to the tree X0
1 = T). In other words, V0 = spanR{1X} is the

one–dimensional space of constant functions on X.

The collection of all of these functions, together with the constant function on X, forms

an orthonormal basis of V . Gavish et al. (2010) show that the wavelet coefficients for this

Haar–like orthonormal basis decay fast as long as the function satisfies certain smoothness

conditions w.r.t. the tree, which are analogous to Hölder smoothness in the Euclidean setting.

While the ”wavelets on trees” design exploits the geometric structure in the vertex domain, it

suffers from the oversimplifying assumption that one can fit a balanced tree on the dataset in

the first place. On one hand, defining a tree on a dataset relies upon finding an appropriate

distance metric between the data points, and so, it is not immediately clear which metric

would produce a tree which best captures the inherent structure of a given dataset. On the

other, while one might be able to come up with a good metric given a dataset, it might not

be feasible to expect that the resulting tree would be balanced. Finally, the algorithm has

the overhead associated with preprocessing X to construct a clustering tree.

34

CHAPTER 4

MULTILEVEL AND MULTISCALE DESIGNS FOR

FACTORIZING MATRICES

Multilevel/multiscale factorizations usually involve “coarsening” of a matrix level by level

until a small number of variables/coordinates remain. By coarsening we mean, roughly,

clustering the coordinates using a carefully crafted objective function. The goal is to com-

press a matrix to a more manageable size (often in the form of a product of several smaller,

more compact matrices), while preserving the local information in the vicinity of each vari-

able/coordinate and keeping the global structure of the matrix approximately unchanged.

These factorizations generally obey the wavelet principle of ”what is local must stay local”,

which we mentioned in Section 2.4.

Classically, matrix factorizations are in the realm of numerical linear algebra, which

deals with reducing matrices to some canonical form such as a diagonal or upper triangular

matrix. One canonical matrix factorization is Jacobi’s method for eigenvalue decomposition

(Jacobi, 1846), which is possibly one of the earliest linear algebra algorithms. It has an

interpretation as a multilevel method in the sense that it iteratively applies very local updates

(in the form of Givens rotations) to the matrix being diagonalized (Section 4.1). Much more

recently, Lee et al. (2008) showed that a modification of Jacobi’s algorithm results in a

matrix factorization, called the Treelet transform (Section 4.2), which has an interpretation

as a MRA (2.14).

Another group of factorizations — such as the Fast Walsh–Hadamard transform and

the earlier mentioned Haar transform (4.3 and Sections 4.4) — originate from harmonic

analysis and for that reason are not typically presented as matrix factorizations. They are,

nevertheless, expressible (and computable) in matrix form, multilevel in nature and closely

relate to the central subject of this thesis, i.e., the Multiresolution Matrix Factorization

introduced in Chapter 5.

35

In machine learning, on the other hand, the goal of multilevel/multiscale dictionary

learning and sparse coding (Section 4.5) is to decompose a matrix into a dictionary of local,

rather than global and dense eigenfunctions.

Finally, in numerical analysis, fast multipole methods are algorithms that can efficiently

compute the interactions between a large number of particles by aggregating them at mul-

tiple scales (Greengard and Rokhlin, 1987; Beatson and Greengard, 1997). The multipole

hierarchy is related to classes of matrices with specific structure such as hierarchical matrices

(Section 4.6).

More generally, the idea of ”coarsening” a graph or matrix is often applied in practice

for solving numerous problems in scientific computing. For example, many large–scale graph

problems are solved by multilevel/multiscale/multiresolution algorithms, in which at each

level of coarsening one defines a set of ”coarse” unknown variables together with the con-

straints they should satisfy or the objective function they should minimize. Each coarsened

unknown is defined in terms of the next, finer–level unknowns, which are in turn defined

in the unknowns on even finer scales — this procedure is iterated until the finest scale is

reached. Then, after the coarse level problem is approximately solved, the fine level problem

is interpolated from that solution (again, this is performed recursively up to the finest scale)

(for example, see (Ron et al., 2011) and the references cited therein). A notable example

in this category are multigrid methods (Brandt, 1973; Hackbusch, 2003; Livne and Brandt,

2012; Briggs et al., 2000), which solve systems of partial differential equations by applying

such a coarsening multiresolution scheme.

4.1 Jacobi’s Algorithm

Jacobi’s eigenvalue algorithm iteratively calculates the eigendecomposition A = UΛU−1 of a

symmetric matrix (Jacobi, 1846). The algorithm works by repeatedly applying a series of

rotations U1, U1, . . ., UL to a symmetric matrix A ∈ Rn×n on the left and on the right side

36

until the product

Λ = U⊺L . . . U
⊺
2U

⊺
1AU1U2 . . . UL, (4.1)

converges to a diagonal matrix, up to numerical precision. The matrix Λ is diagonal with its

main diagonal containing the eigenvalues of A. The eigenvectors of A can be obtained from

the columns of the cumulative matrix

U = U1U2 . . . UL. (4.2)

Each column U∶,i contains an eigenvector corresponding to the eigenvalue Λi,i (the eigenvalues

are not in a specific order). The index 1 ≤ ` ≤ L denotes each iteration of Jacobi’s algorithm.

We refer to ` as the ”level” of the factorization.

Writing out the full L level factorization of A in terms of U1U2 . . . UL, we get

A = U1U2 . . . ULΛU⊺L . . . U
⊺
2U

⊺
1 , (4.3)

where the left hand side equals the right hand side up to numerical precision.

In numerical linear algebra the rotation matrices U1, U1, . . ., UL are known as Givens

rotations. A Givens rotation is a plane rotation represented by a matrix of the form

Ui,j,θ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 ⋮ ⋮

. . . c . . . −s . . .
⋮ 1 ⋮

. . . s . . . c . . .
⋮ ⋮ 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

c = cos θ
s = sin θ,

(4.4)

where the dots denote the fact that the matrix is zero everywhere except for two off-diagonal

entries and the main diagonal, which contains either 1’s or c = cos θ for some angle θ ∈ (0,2π),

at the intersections of the i–th and j–th row/column.

Applying a Givens rotation at level ` = 1 to both sides of A results in the matrix

37

A1 = Ui,j,θAU
⊺
i,j,θ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1,i A1,j
⋮ ⋮

Ai,1 . . . Ai,i . . . Ai,j . . . Ai,n
⋮ ⋮

Aj,1 . . . Aj,i . . . Aj,j . . . Aj,n
⋮ ⋮

An,i An,j

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.5)

where the dots denote that only the i–th and j–th rows/columns of A are altered by the

rotation. In other words, (4.5) is very local operation. Explicitly performing the multiplica-

tion in equation (4.5), we can compute the entries in the i–th and j–th rows/columns of A1

as follows (assuming A0 = A)

[A1]i,j = sc[A0]i,i − s
2[A0]i,j + c

2[A0]i,j − cs[A0]j,j

[A1]i,i = c
2[A0]i,i + s

2[A0]j,j − 2sc[A0]i,j

[A1]j,j = s
2[A0]i,i + c

2[A0]j,j + 2sc[A0]i,j

[A1]k,i = [A1]i,k = c[A0]k,i − s[A0]k,j k /= i, j, 1 ≤ k ≤ n

[A1]k,j = [A1]j,k = s[A0]k,i + c[A0]k,j k /= i, j, 1 ≤ k ≤ n

[A1]k,p = [A0]k,p k, p /= i, j, 1 ≤ k ≤ n. (4.6)

Note that applying the rotation matrices on both sides of A0 preserves its symmetry so [A1]

is also symmetric.

The key idea of Jacobi’s method is to greedily zero out the off-diagonal elements of A

by performing a series of Given rotations. Thus, at the first level the rotation angle θ of

Ui,j,θ needs to be set such that the off-diagonal element [A1]i,j (given by the first equation

in (4.6)) is zeroed out. Setting

[A1]i,j = sc[A0]i,i − s
2[A0]i,j + c

2[A0]i,j − cs[A0]j,j = 0,

38

and solving for θ yields the closed form solution

θ =
1

2
arctan(2[A0]i,j/([A0]j,j − [A0]i,i)). (4.7)

Replacing A0 with A` and A1 with A`+1 in (4.6) and (4.7), we now have an iterative

way of updating the (i, j)–th pair of rows/columns of A`+1 = U⊺
`+1

. . . U⊺2U
⊺
1AU1U2 . . . U`+1

in closed form by computing the rotation angle of U`+1 = Ui,j,θ. Thus, at each level, in order

to apply a rotation U`+1 to A` = U
⊺
`
. . . U⊺2U

⊺
1AU1U2 . . . U`, only two rows and columns of

A` need to be updated. Note that AL = Λ, i.e., upon convergence of Jacobi’s algorithm the

main diagonal of AL contains the eigenvalues of A.

Analogously to the iterative computation of Λ by (4.6), the eigenvectors (4.2) can also

be computed iteratively. At iteration ` + 1 the cumulative matrix U`+1 = U1U2 . . . U`+1 can

be computed by performing the following closed form updates of U` = U1U2 . . . U`

[U`+1]k,i = c[U`]k,i − s[U`+1]k,j k /= i, j, 1 ≤ k ≤ n,

[U`+1]k,j = s[U`]k,i + c[U`+1]k,j k /= i, j, 1 ≤ k ≤ n,

[U`+1]k,p = [U`]k,p k, p /= i, j, (4.8)

which means that to compute [U`+1] only the i–th and j–th columns of [U`] need to be

updated. Finally, upon convergence, at level L, we have UL = U , i.e., the eigenvectors of A

can be read off from the columns of UL.

While Jacobi’s algorithm is designed to zero out off-diagonal entries of A` at each itera-

tion, there are various pivoting strategies (which empirically affect the rate of convergence

of Jacobi’s algorithm) for zeroing out those elements (Hansen, 1963; Giménez et al., 1996).

Typically, the maximum off-diagonal entry is zeroed out at each level `. It is important to

note that even though each rotation might increase/decrease the entries in A` which have

been zeroed out by the previous rotations, the total off-diagonal mass decreases at each

iteration (i.e., the sums of the squares of the off-diagonal entries of A1,A2, . . . ,AL form a

39

decreasing sequence).

Finally, the eigenvalues of A are determined by finding the roots of the characteristic

polynomial, however explicit algebraic formulas for finding the roots of a polynomial exists

only if its degree is ≤ 4. So,in general, A cannot be diagonalized to infinite precision in

a finite number of rotations. In practice, it has been empirically shown that the number

of rotations L required for the convergence of the algorithm is on the order of 3n2 to 5n2

(each of which can be performed in order n operations) (Rutishauser, 1966). Thus, the total

running time of Jacobi’s method is O(n3). Details about implementing Jacobi’s method can

be found in (Press et al., 1996).

4.2 Treelets

Lee et al. (2008) propose a multilevel matrix factorization, called Treelets, which is a modi-

fication of Jacobi’s algorithm. Therefore, below we use the notation we already introduced

in the previous section. Similar to above, we will sometimes refer to the `–th iteration of the

Treelet algorithm as the `–th level.

The Treelets algorithm constructs a multiscale basis of a symmetric matrix A (more

specifically, the covariance matrix A ∈ Rn×n of a data set X = {x1, . . . , xm} of points in Rn)

in the form

A ≈ U1U2 . . . ULΛU⊺L . . . U
⊺
2U

⊺
1 ,

where, just like in Jacobi’s algorithm in (4.3), the matrices U1, . . . , UL are Givens rotations,

but the matrix Λ is no longer strictly diagonal (but still symmetric). Hence, the equality

sign in (4.3) is now replaced with the ≈ sign.

In addition to each of the U` matrices being a Givens rotation, the indices i and j in-

volved in each rotation U` = Ui,j,θ, as well as the order in which the rotations are applied,

obey additional constrains. As a result of these constraints, the orthogonal basis vectors of

U1,U2, . . . ,UL can be interpreted as wavelets supported on different subsets of variables. To

40

put it differently, the Treelets algorithm is able to find a hierarchical cluster tree of the vari-

ables and more importantly, is able to do so without fitting the data to some predetermined

structure, such as, for example, the type of hierarchical tree used by Gavish et al. (2010) and

discussed in Section 3.3. Instead, the construction of the Treelet transform is data driven in

the sense that the basis vectors are derived from the local structure of the data itself. As

discussed in Chapter 3, standard wavelets are not well suited for the analysis of unordered

data, such as graphs. However, the Treelets transform circumvents this problem by finding a

data adaptive multiscale representation of the data regardless of the ordering of the variables

in A.

In addition to iteratively updating A` and U` (again using the above convention A0 = A),

Treelets also iteratively update a set of indices S — the way S is updated guarantees that the

Givens rotations U1, . . . , UL obey the constrains mentioned above. Starting with a covariance

matrix A ∈ Rn×n and the set S = [n] (each index denotes a row/column of A) , the Treelets

algorithm consists of repeating the following three steps at each iteration/level `:

1. The first step is to find the two variables i, j ∈ S which are most similar to each other

according to the similarity matrix A`. So, finding the (i, j) pair corresponds to finding

the maximum off–diagonal element of the submatrix [A`]S,S .

Note that this step is very similar to the way Jacobi’s algorithm proceeds, with the

added constraint that the maximum off-diagonal entry is found not among all (i, j)

pairs of rows/columns of A`, but only among the pairs of rows/columns still in S.

2. In this step the variables i and j are replaced by a coarse–grained sum variable and a

residual difference variable. This is equivalent to applying a Givens rotation U` = Ui,j,θ

(4.4) to A`−1 in order to obtain A` = U
⊺
`
. . . U⊺2U

⊺
1AU1U2 . . . U`. Just like in Jacobi’s

algorithm, the θ angle of the rotation U` = Ui,j,θ is set according to (4.7) and as a

result [A`]i,j is zeroed out.

Applying U` on both sides of A`−1 can be thought of a local PCA operation in the

41

sense that U` diagonalizes the 2 × 2 matrix

⎛
⎜
⎜
⎝

[A`−1]i,i [A`−1]i,j

[A`−1]j,i [A`−1]j,j

⎞
⎟
⎟
⎠

. (4.9)

In order to apply U` on A`−1, all that is required is updating A`−1 according to the

set of closed form equations (4.6). Now, one of the two diagonal entries [A`]i,i and

[A`]j,j goes up, while the other goes down in value, relative to their respective values

[A`−1]i,i and [A`−1]i,i before the rotation.

This step is identical to applying a Givens rotation in Jacobi’s algorithm.

3. As soon as U` is applied on both sides of A`−1 to obtain A`, the index corresponding

to the smaller of the two entries [A`]i,i and [A`]j,j is eliminated from S. In other

words, if [A`−1]i,i ≤ [A`−1]j,j , the set S is updated to S = S/i.

This ”elimination” step is not present in Jacobi’s algorithm.

These three steps are repeated level by level for a total of L = n levels, i.e., until the set S

becomes empty. By performing, at each level `, a rotation U` = Ui,j,θ, involving an (i, j) pair

of coordinates (step 2), followed by the elimination of either i or j from S (step 3) (which

means that subsequent rotations cannot involve the i–th or the i–th coordinate), the Treelets

algorithm constructs a multiscale orthonormal basis supported on a hierarchical binary tree.

After L = n iterations the columns of UL = U1U2 . . . UL contain all the wavelets.

Treelets is motivated by the need to find higher–order dependences/hierarchies in covari-

ances matrices arising in classification related tasks, such as feature selection. Therefore,

in Treelets Jacobi’s objective function of greedily minimizing the off-diagonal norm of A` is

replaced with the objective of constructing a basis supported on nested clusters of variables

(i.e. rows/columns of the covariance matrix A).

42

4.3 The Fast Walsh–Hadamard Transform

The Fourier transform of a function f on the d–dimensional unit cube {0,1}d (equivalently,

on the group Z2 × . . .×Z2), in some contexts also called the Hadamard or Walsh–Hadamard

transform, is

f̂(i1, . . . , id) =
1

2d/2

1

∑
j1,...,jd=0

(−1)i1j1+i2j2+...+idjd f(j1, . . . , jd). (4.10)

Vectorizing f and f̂ , we can write f̂ = Hf with H being

H =H ⊗H ⊗ . . .⊗H
´¹¹¹¸¹¹¹¶

d times

=H⊗d, where H = (
1 1
1 −1

) . (4.11)

The Fast Walsh–Hadamard Transform (FWHT) is based on the observation that H factors

as a product WdWd−1 . . .W1, where

Wk = I2d−k ⊗H ⊗ I2k−1 ,

and, as usual, Im denotes the m dimensional identity. Notice that each row of Wk contains

exactly two non-zero elements. Therefore, multiplying any vector by Wk takes only 2 ⋅

2d operations, and by applying W1,W2, . . . ,Wd in series, the transform f ↦ Hf may be

computed in d2d+1 time, in contrast to the 22d complexity of the naive approach.

As one would expect from a Fourier transform, H diagonalizes the corresponding Lapla-

cian,

∆ = H⊺DH =W⊺
1 W

⊺
2 . . .W

⊺
dDWd . . .W2W1, (4.12)

43

where ∆ is now the Laplacian of the hypercube, given (in multi-index notation), by

∆I,J =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1 if I = (i1, . . . , id) and J = (j1, . . . , jd) differ in exactly one coordinate,

d if I =J,

0 otherwise.

4.4 The Fast Haar Wavelet Transform

As mentioned in Section 2.4, one of the first wavelet functions ever proposed is the Haar

wavelet (Haar, 1909), which was introduced in the context of decomposing functions on

the real line. As Figure 2.1(c) shows, the Haar mother wavelet and scaling function are

respectively

ψ(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 0 ≤ x < 0.5

− 1 0.5 ≤ x < 1

0 otherwise

and φ(x) =

⎧⎪⎪
⎨
⎪⎪⎩

1 0 ≤ x < 1

0 otherwise.

Given a function f ∶ [0,1)→ R discretized at resolution 2`0 for some `0 < 0, i.e., f ∈ V`0∩R
[0,1),

according to (2.20) the wavelet transform of f is

f(x) =
0

∑
`=`0+1

2−`−1

∑
m=0

⟨f,ψ`m⟩ψ`m(x) + ⟨f, φ0
0⟩φ

0
0(x),

where ψ`m = 2−`/2ψ(2−`x −m) and φ`m = 2−`/2φ(2−`x −m).

The Haar scaling functions φ`m and wavelets ψ`m are averaging and difference operators

applied to the interval [2`m,2`(m+1)) and so the wavelet transform can be easily computed.

Now we let f = (⟨f, φ`00 ⟩, . . . , ⟨f, φ`0
2−`0−1

⟩)⊺ be the vector representation of f in V`0 , and

f̂ be the vector of wavelet coefficients in the particular order that puts f̂1 = ⟨f, φ0
0⟩ and

f̂2`−`0−1(1+2m)+1 = ⟨f,ψ`m⟩. It is easy to check that the wavelet transform f ↦ f̂ = Wf

44

factorizes in the form

W = U0 . . . U`0+2U`0+1, (4.13)

where U` is defined as

U` = I ⊕T` (I2−` ⊗ Ĥ)

with Ĥ defined in (4.11), a set T` = (1, k + 1,2k + 1, . . . ,2−`k + 1), where k = 2`−`0−1, and ⊗

denoting the tensor product (1.3). The Haar wavelet transform diagonalizes matrices with

nested (hierarchical) block-diagonal structure of the form

A =
`0
⊕
m=1

γm I2`0−m ⊗ 12m×2m ,

for any setting of the coefficients γ1, . . . , γ`0 , into

A = U⊺1U
⊺
2 . . . U

⊺
LDUL . . . U2U1, (4.14)

with D being a diagonal matrix.

4.5 Multilevel and Multiscale Dictionary Learning

Often the assumption in numerical linear algebra and certain machine learning methods is

that a matrix is of low rank. If a matrix A ∈ Rn×n is of rank r << n, it can be expressed as a

sum of a dictionary of r mutually orthogonal unit vectors {q1, q2, . . . , qr} in the form

A =
r

∑
i=1

λiqiq
⊺
i , (4.15)

where q1, q2, . . . , qr are the top normalized eigenvectors of A with their corresponding eigen-

values λ1, λ2, . . . , λr. When A is a covariance matrix, the decomposition of the form (4.15)

is also known as Principal Component Analysis (PCA) (Jolliffe, 1986; Eckart and Young,

1936). The decomposition (4.15) is one of the ways to approximate (or compress) the original

45

matrix A, since selecting the top eigenvectors guarantees that the error ∣∣A −Ar∣∣, measured

in Frobenius, operator or trace norm, is minimized. The computational drawback of using

PCA for matrix approximations is that eigenvectors are generally dense, i.e. supported on

all n dimension of A, while matrices arising in graph learning problems are sparse, since each

graph vertex is generally connected to just a few other “nearby” vertices. In cases like this,

conceptually it makes sense to decompose A into a dictionary D of local, rather than global,

dense eigenfunctions. Modeling A in terms of a dictionary also avoids the added overhead

of finding the first r eigenvectors, which becomes prohibitive in cases where the underlying

matrix is very large.

The study of sparse representation of signals (also known as sparse coding) using dic-

tionaries attempts to achieve precisely this task. Traditionally used in image and signal

processing, more recently dictionaries have also found applications in compression, regular-

ization in inverse problems and feature extraction (Chen et al., 1998; Mairal et al., 2008;

Aharon et al., 2006).

The goal of sparse coding is to model a signal y ∈ Rn using a dictionary D ∈ Rn×k whose

set of columns {di}
k
i=1 form a collection of k waveforms (also known as atoms). The signal

x can be represented as a linear combination in the form x = Dα (i.e., ∣∣ x −Dα ∣∣p ≤ ε for

some precision parameter ε and appropriately chosen `p norm), where α ∈ Rk is a vector of

representation coefficients. If the dictionary consists of more than n atoms (i.e., k > n), it

is called overcomplete and in this case, if D is a full rank matrix (which is often the case),

the representation problem of finding α has an infinite number of solutions and, therefore,

certain constraints need to be imposed. One simple approach is to find an α with the highest

sparsity, i.e., largest number of zero coefficients, which is equivalent to minimizing the `0

norm of `0. Note that the `0 norm of a vector (i.e., the number of nonzero entries in it) is not

technically a norm. However, this approach is very sensitive to perturbations in the signal.

Typically, sparse coding with `1 regularization is used, which is equivalent to optimizing the

46

following cost function

f(D) = min
α∈Rk

∣∣ x −Dα ∣∣22 + λ1∣∣ α ∣∣1,

where α is a regularization parameter and the `1 norm of an n–dimensional vector is given

by ∣∣ x ∣∣1 = ∑
n
i=1 ∣xi∣. It is well known that `1 regularization results in few nonzero coefficients

in α — in other words the solution of the optimization problem above is very sparse.

If, instead of considering an individual signal, we consider a training set {x1, x2, . . . , xm}

of m observations/signals in Rn, our goal is to learn a dictionary D ∈ Rn×k such that each

observation can be well approximated by a linear combination of k columns of D. The

coefficients determining the linear combination are now contained in a matrix A ∈ Rk×m

(rather than a k–dimensional vector α) and so the approximation of X reduces to finding

the decomposition X̃ =DA such that X̃ is as close (in some norm) to X as possible. Denoting

the matrix of observations by X ∈ Rn×m and the matrix of coefficients by A ∈ Rk×m, the

matrix form of the above equation becomes

min
D,A

∣∣X −DA ∣∣2Frob + λ1 ∑
i1,i2

∣αi1,i2 ∣, (4.16)

where the `2 norm of the columns of D is typically constrained. Note that (4.16) is not

jointly convex with respect to both D and A, however it is convex with respect to D when

α is fixed, and the other way around.

Optimization of the form (4.16) is exactly the approach taken by the LASSO (Tibshi-

rani, 1996) and the ”pursuit” (e.g., matching pursuit, basis pursuit among others) family

of algorithms (Mallat and Zhang, 1993; Tropp, 2004; Chen et al., 1998). The properties

of the dictionary D set the limit on the sparsity level of α, which in turn directly affects

the convergences properties of the pursuit algorithms. Thus, the way such a dictionary is

constructed in the first place is crucial for finding the sparse representations α.

Designing dictionaries has developed into a separate line of research. On one hand,

wavelet methods offer an easy solution by simply composing D as a union of orthonormal

47

bases. However, one of the major disadvantages of this approach is that the bases are

predefined in the sense that the wavelet transform used is chosen in advance and is not

learnt from the data points. On the other hand, many machine learning approaches focus on

designing data adapted dictionaries — finding an optimal dictionary is treated as a learning

problem in which D is iteratively updated based on the training data points.

Sparsity is not the only desirable properly in dictionary learning, another one is structure

among the dictionary elements. As pointed out by Jenatton et al. (2010), it is often desirable

to encode higher order information about the supports of the dictionary elements that reflects

the structure of the data. This becomes particularly clear in image data where features

associated to the pixels of an image are naturally organized on a grid. In this case the

supports of the dictionary elements explaining the variability of images are naturally expected

to be localized or have some regularity with respect to that grid.

Structured sparsity type dictionaries, also knowns as structured sparse PCA, (see (Jenat-

ton et al., 2010) and the references they cite) are based on the so-called structure sparsity

inducing norm (Jenatton et al., 2011). This norm induces structured sparsity in the following

sense: the solutions to a learning problem regularized by this norm have a sparse support

which belongs to a certain set of groups of variables.

A variety of other methods, such as but not limited to K-SVD(Aharon et al., 2006),

Bayesian methods(Lewicki and Sejnowski, 2000), and discriminative dictionaries (Mairal

et al., 2009), operate at a single scale (Lewicki and Sejnowski, 2000).

Yet another type of dictionaries incorporate a more refined notion of structure, one that

is constructed in a multiscale/multilevel manner (Mairal et al., 2008; Thiagarajan et al.,

2011; Magoarou and Gribonval, 2014). Another notable example in this category is the

multiresolution inspired and data–adaptive dictionary proposed by Allard et al. (2012). Their

dictionary consisting of geometric wavelets is based on a multiresolution analysis that adapts

to arbitrary nonlinear manifolds modeling the data space.

48

(a) (b)

Figure 4.1: Hierarchical matrix structure. Depending on the constraints discussed
in Section 4.6 different types of hierarchical matrices have quite different tessellations. For
visual clarity in these figures we assume an ideal scenario, in which the clusters consist of the
same number of coordinates and the cluster trees are binary and balanced, of height 4. (a)
In an HODLR matrix the diagonal blocks are dense (shown in gray), while the off-diagonal
blocks (shown in white) can be approximated by low rank matrices. (b) H2 matrices are a
refinement of this idea. Blocks which can be approximated by low rank matrices are shown
in white.

4.6 Hierarchical Matrices

Hierarchical matrices are a class of dense matrices which have a special subblock structure

predicated on the assumption that: (a) these dense matrices can be recursively subdivided

into subblocks based on a tree structure; and (b) certain subblocks arising at different levels

in the tree are well approximated by low rank matrices. To describe the way hierarchical

matrices are organized we start with n points X = {x1, x2, . . . , xn}. The points are typically

low dimensional, i.e., xi ∈ Rd with d ≤ 3. Each Ai,j entry of a hierarchical matrix A is

interpreted as an interaction between points xi and xj . Let the set C ⊂X denote a cluster of

points which are close to each other in some metric (e.g., in term of their Euclidean distance).

If CI ⊂ X and CJ ⊂ X are respectively the I-th and J-th cluster, then AI,J ∈ R∣CI ∣×∣CJ ∣ is a

submatrix of A which contains the interactions between the points in the clusters CI and CJ .

We can define a hierarchical division of the points in X in the form of a (typically balanced)

tree. Letting each cluster be a node in that tree, the child, parent and sibling relationships

between the clusters in the tree is based on the cluster assignments of the points, as follows

(i) cluster CI is a child of cluster CJ (with CJ being the parent of CI), if CI ⊂ CJ . (Note

that the ancestors of CJ in the cluster tree, not just its child cluster CI , are subsets

49

of CJ);

(ii) two clusters CI ,CJ are siblings if they have the same parent, i.e., they are different

subsets of the same set.

If two disjoint clusters CI ,CJ are separated by a distance of at least m, the clusters are well

separated, and otherwise, they are considered neighbors. Cluster CI is said to be in the

interaction list of cluster CJ (and vice versa) if the matrix AI,J can be approximated by

a low rank matrix.

Based on the above dependencies, various hierarchical matrices arise depending on sev-

eral factors: (i) the tree type (e.g., binary or quad tree); (ii) the presence of interactions

between neighboring clusters; (iii) a nested basis structure (i.e., whether or not the basis of

a submatrix cut out by a parent cluster can be constructed from the bases of the subma-

trices cut out by its children clusters); (iv) the type of low rank, e.g., analytic (using SVD,

CUR, QR and so on.) or algebraic (using Taylor series, Multipole expansion, interpolation).

Ambikasaran (2013) and Börm et al. (2003) describe in much detail the construction of hi-

erarchical matrices, as well as the differences between the various subtypes of hierarchical

matrices (some of which are diagramed in Figure 4.1).

Hierarchically off diagonal low rank (HODLR) matrices are hierarchical matrices

in which the interaction between the points in any cluster CI and the points in any nonin-

tersecting cluster CJ (i.e., CI ∩CJ = ∅) leads to a low rank subblock AI,J . More specifically,

every off-diagonal block in an HOLDR matrix should have rank at most r, for some r << n.

For example, assuming that we can define a binary, balanced tree (of height 2) on clusters of

50

X (as described above), the corresponding two level HOLDR matrix A would have the form

A=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1
1 U1

1A
1
1,2V

1
2
⊺

U1
2A

1
2,1V

1
1
⊺

A1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A2
1 U2

1A
2
1,2V

2
2
⊺

U2
2A

2
2,1V

2
1
⊺

A2
2

U1
1A

1
1,2V

1
2
⊺

U1
2A

1
2,1V

1
1
⊺ A2

3 U2
3A

2
3,4V

2
4
⊺

U1
4A

2
4,3V

2
3
⊺

A2
4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the diagonal blocks are denoted Aki ∈ R
n/2k×n/2k , and each off-diagonal block Aki,j is of

size r×r (where r is the rank of the interactions between the sibling clusters of points), while

the columns of Uki ∈ Rn/2k×r and V ki ∈ Rn/2k×r form a basis for, respectively, the column

and row space of that block. Note that for a symmetric matrix Uki = V ki . Additionally,

by construction it is required that the basis matrices can be expressed hierarchically —

for example, the row coordinates that form the matrix U1
1A

1
1,2V

1
2
⊺

are the union of the

row coordinates that form U2
1A

2
1,2V

2
2
⊺

and U2
2A

2
2,1V

2
1
⊺
. Thus, the basis U1

2 needs to be

expressible in terms of U2
1 ∈ Rn/4×r and U2

2 ∈ Rn/4×r in the form

U1
2 =

⎛
⎜
⎜
⎝

U2
1 0

0 U2
2

⎞
⎟
⎟
⎠

U ′2,

for some small matrix U ′2 ∈ R2r×r. The matrices Uki at higher levels can be computed

recursively, but efficiently by storing only the relatively small U ′i matrices. In general, at

level k each diagonal block Aki (with 1 ≤ i ≤ 2k, k ≥ 0) is subdivided into

Aki =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ak+1
2i−1 Uk+1

2i−1A
k+1
2i−1V

k+1
2i

⊺

Uk+1
2i Ak+1

2i,2i−1V
k+1
2i−1

⊺
Ak+1

2i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where Ak+1
2i−1 and Ak+1

2i denote the interactions between the sibling cluster, Uk+1
2i−1 and Uk+1

2i

denote the bases for the column space of the respective subblock, while V k+1
2i−1 and V k+1

2i

denote the bases for the row space of the respective subblock.

51

Figure 4.1(a) illustrates the tessellation pattern for an HODLR matrix similar to the one

in this example, except the number of levels in the figure is four, rather than two.

Hierarchically semi-separable (HSS) matrices (Chandrasekaran et al., 2005) are a

subclass of HODLR matrices which have the added constraint that a low rank basis for the

interaction of a cluster with its siblings can be constructed from the low rank basis of the

interaction of its children. Similarly to the HODLR example above, if we assume a binary,

balanced tree (of height 2) on the clusters of X, the resulting two level HSS representation

is of the form

A=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1
1 U1

1A
1
1,2V

1
2
⊺

U1
2A

1
2,1V

1
1
⊺

A1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A2
1 U2

1A
2
1,2V

2
2
⊺

U2
2A

2
2,1V

2
1
⊺

A2
2

U2
1 S2

1

U2
2 S2

2

A1
1,2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V 2
3 R2

3

V 2
4 R2

4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺

U2
3 S2

3

U2
4 S2

4

A1
2,1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V 2
1 R2

1

V 2
2 R2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺

A2
3 U2

3A
2
3,4V

2
4
⊺

U1
4A

2
4,3V

2
3
⊺

A2
4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where Uki ∈ Rn/2k×r and V ki ∈ Rn/2k×r. However, the additional constraint is that each Uki

can be constructed from the basis of the interactions of its children from level k + 1. So, in

general, at level k, Uki and V ki can be constructed, respectively, in the following block form

Uki =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Uk+1
2i−1 Sk+1

2i−1

Uk+1
2i Sk+1

2i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and V ki =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V k+1
2i−1 Rk+1

2i−1

V k+1
2i Rk+1

2i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the matrices Sk+1
2i−1 and Sk+1

2i are called the downward pass operators, while Rk+1
2i−1 and

Rk+1
2i are called the upward pass operators (Ambikasaran, 2013). The downward and upward

pass operators can be computed by orthogonalizing Uki and V ki , respectively (for example,

by a truncated SVD (Lessel et al., 2016)).

52

H matrices (Hackbusch, 1999; Hackbusch and Khoromskij, 2000) and H2 matrices

(Börm and Garcke, 2007; Börm, 2007) are two classes of hierarchical matrices which share a

slightly more restrictive property in comparison to the HODLR and HSS subclasses. Rather

than limiting the interactions of nonintersecting clusters to low rank, for H and H2 matrices

the interactions between neighboring clusters are full rank and the interactions between well

separated clusters are low rank. The distinction between H2 and H stems from the fact that

H2 matrices are a subclass of H matrices with the additional constraint that low rank basis

for the interaction of a cluster with its siblings can be constructed from the low rank basis of

the interaction of its children. The resulting tessellation pattern for H2 matrices is illustrated

in Figure 4.1(b). Finally, FMM matrices are H2 matrices whose matrix–vector product

can be computed in time O(m+n) (for a matrix of size m×n) using the Fast Multiple Method

(FMM) (Greengard and Rokhlin, 1987; Beatson and Greengard, 1997). FMM matrices have

constraints on the type of clustering tree as well as the low rank structure imposed by the

interactions between sibling clusters.

Large and dense matrices such as kernel/covariance matrices and operators arising in ap-

plications such as integral equations, interpolation and inverse problems can be approximated

by hierarchical matrices (Ambikasaran, 2013; Ambikasaran and Darve, 2014). Once a matrix

is represented in a hierarchical form, downstream operations on it such as matrix–matrix

multiplication, inversion and LU factorization, become significantly faster (Hackbusch, 1999;

Börm and Garcke, 2007; Ambikasaran and O’Neil, 2014). For example, inverting an H ma-

trix yields a good approximate inverse, which, in turn can be used either for preconditioning

of large linear system or for constructing fast direct solvers (Chandrasekaran et al., 2005;

Ghysels et al., 2016).

Constructing and storing the cluster tree, which defines the hierarchical matrix block

structure, is all that is required for storing such an approximation. While computing the clus-

ter tree can be expensive, the computational cost of constructing hierarchical matrices (and

therefore its downstream operations) can be reduced for the symmetric case (Ambikasaran

53

and O’Neil, 2014). Additionally, Martinsson (2011) propose reducing the complexity of con-

structing hierarchical matrices by randomized low rank matrix approximation algorithms

(see Chapter 6 for a review of low rank approximations).

The connections between hierarchical matrices and the other multilevel/multiscale meth-

ods discussed in this chapter become more apparent when the constraint that the same rank

parameter r is used at every level is dropped and the rank is instead an adaptive parameter

(Börm, 2007).

Finally, hierarchical matrices rely on the fact that the underlying data is low dimensional

and as the number of dimensions grows, hierarchical matrix construction becomes nontrivial

mainly due to the infeasibility of building cluster trees in higher dimensions. Thus, while

hierarchical matrices offer tremendous speed up for low dimensional problems arising in

physics, their adoption, with a few notable exceptions (Ambikasaran and O’Neil, 2014; Cheng

et al., 2014; Koutis et al., 2011), has been fairly limited in machine learning applications.

54

CHAPTER 5

MULTIRESOLUTION MATRIX FACTORIZATION

This chapter defines Multiresolution Matrix Factorization (MMF) and introduces several

algorithms for computing the MMF of symmetric matrices. This is an expanded version of

the material we presented in (Kondor et al., 2014).

5.1 Multiresolution Matrix Factorization (MMF)

In Sections 2.1 and 2.6 we saw that Fourier analysis and the eigendocomposition of a sym-

metric matrix A ∈ Rn×n are closely related, since finding the Fourier basis reduces to finding

the eigendecomposition

A =
r

∑
i=1

λi qi q
⊺
i , (5.1)

where {q1, q2, . . . , qr} are the normalized eigenvectors of A with their corresponding eigen-

values {λ1, λ2, . . . , λr} and r ≤ n is the rank of A. The matrix factorization equivalent of

(5.1) is also called Principal Component Analysis (PCA) (Eckart and Young, 1936) and has

the form

()

A

= ()

Q⊺

()

Λ

()

Q

, (5.2)

where Q is an orthogonal matrix whose columns contain the eigenvectors and Λ contains the

eigenvalues on its main diagonal. The drawback of PCA is that eigenvectors are almost al-

ways dense, while matrices occurring in learning problems, especially those related to graphs,

often have strong locality properties, whereby they more closely couple certain clusters of

nearby coordinates than those farther apart with respect to some underlying topology. In

such cases, modeling A in terms of a basis of global eigenfunctions is both computationally

wasteful and conceptually absurd: a localized dictionary would be more appropriate. This

is part of the reason for the recent interest in sparse PCA (sPCA) algorithms (Jenatton

et al., 2010, 2011), in which the vectors Qi,∶ in (5.2) are constrained to be sparse, while the

55

orthogonality constraint may be relaxed. However, sPCA is liable to suffer from the opposite

problem of capturing structure locally, but failing to recover larger scale patterns in A.

In contrast to the ”one–shot” diagonalization of A in (5.2), Multiresolution Matrix Fac-

torization (MMF) is a multilevel factorization — it applies not just one but a sequence of

sparse orthogonal transforms to A, which capture structure at different resolution levels.

After the first orthogonal transform U1 is applied, the subset of rows/columns of U1AU
⊺
1

which interact the least with the rest of the matrix capture the finest scale structure in A,

so the corresponding rows of U1 are designated level one wavelets, and these dimensions are

subsequently kept invariant. Then the process is repeated by applying a second orthogonal

transform to yield U2U1AU
⊺
1U

⊺
2 and splitting off another subspace of Rn spanned by second

level wavelets, and so on, until some desired number of dimensions are split off

A↦ U1AU
⊺
1 ↦ U2U1AU

⊺
1U

⊺
2 ↦ . . . ⋅ ⋅ ⋅↦ UL . . . U2U1AU

⊺
1U

⊺
2 . . . U

⊺
L. (5.3)

Ultimately, the sequence (5.3) results in an L level factorization of the form

A = U⊺1U
⊺
2 . . . U

⊺
LHUL . . . U2U1, (5.4)

where the matrix H is close to diagonal.

The central idea behind MMF is to convert multiresolution analysis into a matrix factor-

ization by focusing on how multiresolution analysis compresses the matrix A. Recall from

Section 2.7 and Figure 2.2 that multiresolution analysis with respect to a symmetric smooth-

ing matrix A ∈ Rn×n consists of finding a sequence of spaces VL ⊂ ⋅ ⋅ ⋅ ⊂ V2 ⊂ V1 ⊂ V0 = L(X) ≅

Rn, where δ` = dim(V`). Also recall that according to MRA3 (2.34) the scaling transform

S`, responsible for the Φ`−1 → Φ` basis change, and the detail transform D`, responsible

for the Φ`−1 → Ψ` basis change, can be combined into a single orthogonal matrix U` of size

δ`−1 × δ`−1 . If we instead set

U` ← U` ⊕ In−δ`−1 , (5.5)

56

each U` matrix can be extended to size n × n. So A becomes

U1AU
⊺
1

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
denoted A1

in the basis Φ1 ∪Ψ1, then A becomes

U2U1AU
⊺
1U

⊺
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
denoted A2

in the basis Φ2 ∪Ψ2 ∪Ψ1, and so on until after L levels A becomes

H ∶= UL . . . U2U1AU
⊺
1U

⊺
2 . . . U

⊺
L

´¹¹¸¹¹¶
denoted AL

(5.6)

in the basis ΦL ∪ΦL−1 ∪ ⋅ ⋅ ⋅ ∪Ψ1. Therefore, similar to the way that Fourier analysis corre-

sponds to eigendompositions, multiresolution analysis essentially factorizes A in the form

A = U⊺1U
⊺
2 . . . U

⊺
LHUL . . . U2U1, (5.7)

subject to the constraints:

(i) Similar to the sparsity requirements for the MRA transforms S` and D` in Figure 2.2,

in MMF each of the U` orthogonal matrices must also be sufficiently sparse.

(ii) Outside a square block of size δ`−1 × δ`−1 each U` is the identity. For simplicity for

now we assume that this block is in the upper left corner — Figure 5.1 illustrates the

shape of the blocks in each of the U1, . . . , UL matrices (after a permutation of their

rows/columns by Π for the sake of visual clarity).

(iii) By MRA3 (2.34) the first δL = dim(VL) rows of AL = UL . . . U2U1 (5.6) contain the

scaling functions {ψLm}m∈Z and the remaining rows contain the {φLm},{φL−1
m }, . . . ,{φ1

m}

57

⎛

⎝

⎞

⎠

UL

⋯
⎛

⎝

⎞

⎠

U2

⎛

⎝

⎞

⎠

U1

Π()

A

Π⊺
⎛

⎝

⎞

⎠

U⊺1

⎛

⎝

⎞

⎠

U⊺2

⋯
⎛

⎝

⎞

⎠

U⊺L

≈
⎛

⎝

⎞

⎠

H

Figure 5.1: MMF factorization schematic. As ` increases, an increasingly large part
of the U` matrices, specifically all but a δ`−1 × δ`−1 submatrix (shown as a gray square), is
just the identity In−δ`−1 (shown as gray ”tails” along the diagonal of U`). The purpose of
the permutation matrix Π is to ensure, purely for visualization purposes, that it is always
the last n − δ`−1 coordinates that are fixed by U`. MMF algorithms do not impose this
permutation constraint and at each level some n − δ`−1 coordinates can be fixed instead.

wavelets.

While in the Fourier (i.e., eigendecomposition) case H would be simply diagonal, in MMF

it has a more complex structure — in particular, it consists of four distinct blocks

H =

⎛
⎜
⎜
⎝

HΦ,Φ HΦ,Ψ

HΨ,Φ HΨ,Ψ

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

H1∶δL,1∶δL H1∶δL,δL∶n

HδL+1∶n,1∶δL HδL+1∶n,δL+1∶n

⎞
⎟
⎟
⎠

. (5.8)

In the above formula HΦ,Φ is effectively a compression of A down to size δL × δL and is

therefore dense. The structure of the other three block matrices reflects the extent to which

MRA1 is satisfied — in particular, the closer the wavelets are to being eigenfunctions, the

better they filter the space by smoothness with respect to A, as defined in MRA1 (2.32).

Below we define multiresolution factorizable matrices as those for which this condition is

perfectly satisfied, i.e., matrices which have an MMF factorization with HΦ,Ψ = H⊺
Ψ,Φ = 0

and HΦ,Φ being diagonal.

In order to define multiresolution factorizability, below we relax the form of (5.7) by

allowing each U` to ”fix” some set of n − δ`−1 coordinates, not necessarily the last n − δ`−1

coordinates as implied by the direct sum in (5.5). In other words, each U` transform must

fix an (n− δ`−1)–dimensional subspace of Rn spanned by some set of n− δ`−1 standard basis

vectors. This generalized structure underlying each U` is captured by the following definition.

58

Definition 1. Given a sequence of dimensions n = δ0 ≥ δ1 ≥ ⋅ ⋅ ⋅ ≥ δL ≥ 1 there is a nested

sequence of sets

n = Sact
0 ⊇ Sact

1 ⊇ Sact
2 ⊇ ⋅ ⋅ ⋅ ⊇ . . . Sact

L , where ∣Sact
` ∣ = δ`,

such that, if we let Sinact
`

= [n]/Sact
`−1

, then [U`]Sinact
` , Sinact

`
= In−δ`−1. Sact

`
and Sinact

`
are

called the active set and inactive set at level `, respectively. Using the direct sum notation

introduced in Section 1.2, this is equivalent to

U` = ⊕Sinact
`−1

I ⊕Sact
`
O (5.9)

for some δ`−1 × δ`−1 orthogonal matrix O.

As a side note, since the elements in an (in)active set represent row indices (equivalently,

by symmetry of A they are also column indices) and there is a one to one correspondence be-

tween the elements of Sact
`

and Sinact
`

and the rows/columns of A, we will sometimes refer to

the rows/columns of A corresponding to the (in)active sets as (in)active rows/columns, or

more generally as (in)active coordinates. The submatrices [A`]Sact
` , Sact

`
and [A`]Sinact

` , Sinact
`

will sometimes be called the active submatrix/part and the inactive submatrix/part

of A, respectively.

The MMF wavelet and scaling functions can be obtained directly from the matrices

U1, U1U2, . . . , U1U2 . . . UL. According to MRA3 (2.34), the scaling functions at level one

are the rows of U1 indexed by the coordinates in the second level active set Sact
2 , while the

wavelets for level one are the rows Sact
1 /Sact

2 of U1 (i.e., the coordinates added to the inactive

set at level one)

φ1
m = [U1]m,∶ with m ∈ Sact

2 ,

ψ1
m = [U1]m,∶ with m ∈ Sact

1 /Sact
2 .

59

At the second level, the scaling functions {φ2
m} and the wavelets {ψ2

m} can be read off from

the rows of the cumulative matrix U2U1 and so on. In general, for level ` the scaling and

wavelet functions are, respectively,

φ`m = [U` . . . U2U1]m,∶ with m ∈ Sact
`+1,

ψ`m = [U` . . . U2U1]m,∶ with m ∈ Sact
`+1/S

act
` .

Allowing each U` to fix some (n − δ`−1)–dimensional set of coordinates also affects the or-

der in which rows are eliminated as wavelets, and the criterion for perfect multiresolution

factorizability of A now becomes H ∈ Hn
Sact
L

(with Sact
L being a class of matrices defined

below).

Definition 2. Given a set S ⊆ [n], a matrix H ∈ Rn×n is S–core diagonal if Hi, j = 0,

unless i, j ∈ S or i = j. Equivalently, by the direct sum notation from Section 1.2, if H is

S–core diagonal, it can be written in the form H = D ⊕S H̄ for some ∣S∣ × ∣S∣ matrix H̄

and D diagonal. The set of all S–core diagonal symmetric matrices of size n×n are denoted

by HnS.

Note that we may sometimes refer to H̄ = HSact
L ,Sact

L
as the core of the compression

(assuming the MMF has L levels) — implicit in this statement is the assumption that H is

Sact
L –core diagonal.

Definition 3. Given an appropriate subset O of the group O(n) of n–dimensional rotation

matrices, a depth parameter L ∈ N, and a sequence of integers n = δ0 ≥ δ1 ≥ δ2 ≥ ⋅ ⋅ ⋅ ≥ δL ≥ 1, a

Multiresolution Matrix Factorization (MMF) of a symmetric matrix A ∈ Rn×n over

O is a factorization of the form

A = U⊺1U
⊺
2 . . . U

⊺
LHUL . . . U2U1, (5.10)

where each U` ∈ O orthogonal transformation matrix satisfies [U`][n]/Sact
`−1, [n]/S

act
`−1

= In−δ`−1

60

In−k ⊕(i1,...,ik)
O = Π

⎛
⎜
⎝

⎞
⎟
⎠

Π⊺

(a)

⊕I1O1 ⋅ ⋅ ⋅ ⊕ ImOm = Π
⎛
⎜
⎝

⎞
⎟
⎠

Π⊺

(b)

Figure 5.2: Schematic of rotation matrices. The two types of sparse rotation matrices
that we consider are: (a) a simple rotation of order k (Definition 5), (b) a compound rotation
of order k (Definition 6). Similarly to Figure 5.1, the purpose of the Π permutation matrices
is just to ensure that the blocks of the matrices appear contiguous in the figure.

for some nested sequence of active sets [n] = Sact
0 ⊇ Sact

1 ⊇ ⋅ ⋅ ⋅ ⊇ Sact
L with ∣Sact

`
∣ = δ`−1 and

H ∈ Hn
Sact
L

.

Definition 4. We say that a symmetric matrix A ∈ Rn×n is fully multiresolution fac-

torizable over O ∈ O(n) with respect to the sequence (δ0, δ1, . . . , δL) if it has a decomposition

of the form described in Definition 3.

The sequence (δ0, δ1, . . . , δL) may follow some predefined law, such as geometric decay

(i.e., δ` = ⌈nη`⌉ for some η ∈ (0,1)) or arithmetic decay (i.e., δ` = n − `m for some m ∈ N).

Different types of MMFs arise depending on how the setO of sparse rotations (from which the

U` transformations are chosen) is defined. In addition to the requirement that each U` fixes

some (n−δ`−1)–dimensional set of coordinates, it has to satisfy two additional requirements:

(i) wavelets must be localized, as required by MRA2 (see Section 2.7), and (ii) each U` must

be sparse in order to get a fast wavelet transform, as required by MRA3 in Section 2.7. We

consider two alternatives defined below — elementary and compound rotations of order k.

Figure 5.2 shows schematics illustrating the block form of these two types of matrices.

Definition 5. We say that U ∈ Rn×n is an elementary rotation of order k (sometimes

also called a k–point rotation) if it is an orthogonal matrix of the form

U = In−k ⊕i1,...,ik O (5.11)

61

for some {i1, . . . , ik} ⊆ [n] and O ∈ O(k). The set of all such matrices we denote Ok(n).

A k–order elementary rotation is very local since it only touches coordinates {i1, . . . , ik}

and leaves the rest invariant. The simplest case is the second order (i.e., (i1, i2)) rotation,

which is equivalent to a Givens rotation U = Ui1,i2,θ where (i1, i2) is a pair of rows/columns

and θ ∈ [0,2π) is the rotation angle between them — recall (4.4). Applying a Givens rotation

Ui1,i2,θ allows for the diagonalization of the 2×2 submatrix [A`−1](i1,i2),(i1,i2)
(in closed form

according to the updates (4.6)) in the form

⎛
⎜
⎜
⎝

cos θ − sin θ

sin θ cos θ

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

[A`−1]i1,i1 [A`−1]i1,i2

[A`−1]i2,i1 [A`−1]i2,i2

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

cos θ sin θ

− sin θ cos θ

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

b1 0

0 b2

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

[A`]i1,i1 [A`]i1,i2

[A`]i2,i1 [A`]i2,i2

⎞
⎟
⎟
⎠

Indeed, we already saw these updates when reviewing Jacobi’s eigenvalue decomposition in

Section 4.1. Jacobi’s algorithm works precisely by constructing an MMF factorization over

Givens rotations with respect to the sequence n = δ0 = δ1 = ⋅ ⋅ ⋅ = δL — in other words,

Jacobi’s algorithm is an MMF which does not fix any coordinates at all at each level `.

Definition 6. We say that U ∈ Rn×n is a compound rotation of order k if it is an

orthogonal matrix of the form

U = ⊕
{i11,...,i

1
k1

}
O1 ⊕ {i21,...,i

2
k2

}
O2 ⋅ ⋅ ⋅ ⊕ {im1 ,...,i

m
km

}Om (5.12)

for some partition {k1
1, . . . , k

1
k1

} ⊍ ⋅ ⋅ ⋅ ⊍ {km1 , . . . , k
m
km

} of [n] with k1, . . . , km < k, and some

sequence of orthogonal matrices O1, . . . ,Om of the appropriate sizes. The set of all such

matrices we denote O∗
k
(n).

Intuitively, the compound rotations can be thought of as a set of multiple elementary

rotations executed in parallel, which consequently allow for computing MMF factorizations

faster and in much more compact form.

62

(a) U4=I⊕(d2,d3)
O

U3=I⊕(d2,d4)
O

CC

d3

UU

U1=I⊕(d2,d5)
O

>>

U2=I⊕(d1,d4)
O

[[

d2

HH

d5

``

d1

II

d4

UU

(b) U5 =I⊕(d2,d4,d6)
O U6=I⊕(d6,d7,d10)

O

U3=I⊕(d2,d4,d1)
O

<< <<

U4=I⊕(d5,d1,d6)
O

bb ==

d7

OO

d10

VV

U1=I⊕(d2,d5,d3)
O

== 44

U2=I⊕(d1,d8,d9)
O

hh OO

d6

ee

d2

II

d5

OO

d3

aa

d4 d1

YY

<<

d8

OO

d9

bb

(c) U3

U2

@@

U2

^^

U1

HH

U1

VV

U1

HH

U1

VV

d1

JJ

d2

SS

d3

KK

d4

SS

d5

KK

d6

SS

d7

KK

d8

SS

Figure 5.3: MMF rotation hierarchy. (a) The rotation tree of a second order Jacobi
MMF of a matrix A ∈R5×5. (b) The partial rotation hierarchy of a third (k = 3) order Jacobi
MMF of A ∈ R10×10. Here the MMF only eliminates one dimension after each rotation.
(c) A similar tree for a second order greedy parallel MMF of A ∈ R8×8. An example of
three rotation matrices which are described by this rotation tree is: U1 = ⊕(d1, d2)

O⊕(d3, d4)
O⊕(d5, d6)

⊕(d7, d8)
O, U2 = I6⊕(d1, d3)

O⊕(d5, d7)
O and U3 = I8⊕(d3, d5)

O. Unlike the other
two figures here each block of the direct sum is represented as a separate leaf. Note that this
tree is perfectly balanced.

Definition 7. Multiresolution factorizations with O = Ok(n) we call Jacobi MMFs and

multiresolution factorizations with O = O∗
k
(n) we call parallel MMFs.

One way to interpret the sequence (5.3) of elementary (Definition 5) or compound (Defi-

nition 6) rotations in MMF is to look at the coordinate ordering induced by these rotations

— Figure 5.3 shows several examples. Each leaf node di in Figure 5.3 represents a coordinate

of A, while each internal node represents a rotation. Two internal nodes are connected by

an edge if two rotations share a coordinate. For example, in Figure 5.3(b) at level one the

orthogonal matrix U1 = I ⊕(d2,d5,d1)
O is applied to both sides of A (accordingly, d1 is added

to the inactive list Sinact
1), while at the third level the orthogonal matrix U3 = I⊕(d2,d4,d3)

O

is applied to U2U1AU
⊺
1U

⊺
2 . U1 and U3 share one coordinate, d2, and are therefore connected

by an edge. The direction of the edge denotes the level order, i.e., lower level rotations point

to higher level ones. We call this type of structure induced by the MMF rotations the MMF

rotation hierarchy. In some cases — for example, in the case of elementary rotations of

order k = 2 in Figure 5.3(a) — the MMF rotation hierarchy is a tree, which we call the

MMF rotation tree. In other cases, such as the third order Jacobi MMF in Figure 5.3(b),

the MMF rotation hierarchy has lattice–like structure.

63

5.2 Computing MMFs

Similar to the way PCA expresses matrices in terms of a small dictionary of vectors (5.1),

MMF approximates A in the form

A∗ =
δL
∑
i,j=1

βi,jφ
L
i φ

L
j
⊺ +

L

∑
`=1

δ`
∑
i=1

η`iψ
`
iψ

`
i
⊺
, (5.13)

where the η`i = ⟨ψ`i ,Aψ
`
i ⟩ wavelet frequencies are the diagonal elements of the HΨ,Ψ block of

H, while the βi,j coefficients are the entries of the HΦ,Φ block (note the similarity between

the compression of a signal f in classical MRA (2.20) and the (5.13) form). Thus, given the

appropriate subset of sparse rotations O and the sequence (δ1, . . . , δL), finding the best MMF

factorization of a symmetric matrix A ∈ Rn×n requires solving the optimization problem

minimize
[n] ⊇ Sact

1 ⊇ ⋅ ⋅ ⋅ ⊇ Sact
L

H ∈Hn
Sact
L
, U1, . . . , UL ∈ O

∣∣A −U⊺1 . . . U
⊺
LHUL . . . U1∣∣. (5.14)

Assuming that the error ∣∣ ⋅ ∣∣ in (5.14) is measured in terms of Frobenius norm, which is

rotationally invariant, we can rewrite the equation above as

minimize
[n] ⊇ Sact

1 ⊇ ⋅ ⋅ ⋅ ⊇ Sact
L

U1, . . . , UL ∈ O

∣∣U⊺L . . . U1AU
⊺
1 . . . U

⊺
L∣∣

2
residual, (5.15)

where ∣∣ ⋅ ∣∣2
residual

is the residual norm

∣∣H ∣∣2residual = ∑

i/=j and (i,j)/=Sact
L ×Sact

L

∣Hi,j ∣
2.

64

Intuitively, the objective of the MMF factorization is to find the series of sparse rotations

(discussed at the beginning of Section 5.1),

A ≡ A0
U1
Ð→ A1

U2
Ð→ ⋅ ⋅ ⋅

UL
Ð→ AL (5.16)

that bring A to a form as close to diagonal as possible. As soon as we designate a cer-

tain set J` ∶= Sact
`−1

/Sact
`

of rows/columns of A` wavelets and the indices contained in J`

are removed from the active set Sact
`

, the active part [A`]Sact
` ,Sact

`
of the matrix A` =

U` . . . U2U1AU
⊺
1U

⊺
2 . . . U

⊺
`
= U`A`−1U

⊺
`

will split into four submatrices:

(i) the new active submatrix [A`]Sact
`+1,S

act
`+1

,

(ii) the inactive submatrix [A`]J`,J` ,

(iii) the matrices [A`]Sact
`+1,J`

and [A`]J`,Sact
`+1

.

Applying subsequent rotations on [A`]Sact
` ,Sact

`
(from both left and right), however, must

by definition leave the coordinates in J` invariant — in particular, the matrix in (ii) will

stay invariant, while each of the two matrices in (iii) can be rotated, only row–wise and only

column–wise, respectively. This means that as soon as rotation U` is applied on both sides

of A`−1, the `2 norm of the J` rows/columns of A` is already committed to the final error.

This leads us to the following proposition about the Frobenius norm approximation error

(5.15).

Proposition 1. Given MMF as defined in Definition 3, the objective function (5.15) can be

expressed as E = ∑L`=1 E`, where E` = ∣∣[A`]J`,J` ∣∣
2
off-diag

+2 ∣∣[A`]J`,Sact
`

∣∣2
Frob

and ∣∣M ∣∣2
off-diag

∶=

∑
i/=j

∣Mi,j ∣
2.

Rather than minimizing the error (5.15) globally, we apply a greedy strategy. The algo-

rithms described in the following sections are based on a greedy approach suggested by the

proposition above — at each level they find the rotation U` that minimizes the error from

65

Algorithm 1 GreedyJacobiMMF(A): computing the Jacobi MMF of A with δ` = n− `.

Input: k, L, and a symmetric matrix A0 = A ∈ Rn×n

set S0 ← [n] (the active set)
for(` = 1 to L){

foreach I = (i1, . . . , ik) ∈ (S`−1)
k with i1 < . . . < ik

compute EI = minO∈O(k) E
O
I , as defined in (5.17)

set I` ← arg minI EI
set O` ← arg minO∈O(k) E

O
I`

set U` ← In−k ⊕I`O`
set S` ← S`−1/{ik}
set A` ← U`A`−1U

⊺
`

}
Output: U1, . . . , UL and H = AL ↓HnSL

Proposition 1. In other words, each U` makes δ`−δ`−1 rows/columns of A as close to diagonal

as possible and designates them as level ` wavelets. We introduce two types of MMFs —

two deterministic algorithms (Sections 5.2.1 and 5.2.2) and a randomized algorithm (Section

5.2.3).

5.2.1 Jacobi MMFs

In Jacobi MMFs, where each U` is an elementary rotation of oder k, we set {δ1, . . . , δL} so as

to split off a constant number m < k of wavelets are each level. For simplicity we set m = 1

and moreover we make the natural assumption that this wavelet is one of the rows/columns

involved in the rotation, i.e., J` = {ik},

Proposition 2. If U` = In−k ⊕I O with I = {i1, . . . , ik} and J` = {ik}, then the contribution

of level ` to the MMF approximation error is

E` = E
O
I = 2

k−1

∑
p=1

[O[A`−1]I,IO
⊺]2k,p + 2[OBO⊺]k,k, (5.17)

where B = [A`−1]I,Sact
`

([A`−1]I,Sact
`

)⊺.

66

Corollary 1. In the special case of k=2 and I` = (i, j),

E` = E
O
(i,j)

= 2[O[A`−1](i,j),(i,j)O
⊺]22,1 + 2[OBO⊺]k,k, (5.18)

where B = [A`−1](i,j),Sact
`

([A`−1](i,j),Sact
`

)⊺.

According to the greedy strategy, at each level `, the index tuple I and the rotation O

must be chosen so as to minimize (5.17). The resulting algorithm, GreedyJacobiMMF,

for the case of k = 2 is given in Algorithm 1, where AL ↓Hn
Sact
L

stands for zeroing out all the

entries in A` except those on the diagonal of A` and and in the [AL]Sact
L ,Sact

L
submatrix.

The complexity of GreedyJacobiMMF O(n3). When k = 2, the MMF rotation hierarchy

is a binary tree in which each U` takes two scaling functions from level ` − 1 and passes on

a single linear combination of them to the next level (see Figure 5.2(a)). In general, the

more similar two rows [A`]i,∶ and [A`]j,∶ to each other, the smaller we can make (5.18) by

choosing the appropriate O. If A is a kernel or similarity matrix between the vertices of a

graphs, for example, the i–th row of A measures the similarity of vertex i to all the other

vertices in the graph. This means that if Algorithm 1 is run on such a graph kernel/similarity

matrix, it will tend to pick pairs of adjacent or nearby vertices and then produce scaling

functions that represent linear combinations of those vertices. Thus, second order MMFs

effectively perform a hierarchical clustering on the rows/columns of A. Uncovering this sort

of hierarchical structure is one of the goals of MMF analysis.

The idea of constructing wavelets by forming a tree of Givens rotations also underlies

the Treelets algorithm (Lee et al., 2008) discussed in Section 4.2. In fact, for k = 2 Jacobi

MMF is similar to both the Treelets method and Jacobi’s algorithm (hence, the name of this

type of MMF) in the sense that the rotation hierarchy is a binary tree (see Figure 5.3(a)).

The binary tree is consequence of the fact that, when k = 2, the supports of any two MMF

wavelets ψ`1 and ψ`
′

1 are either disjoint or one is contained in the other. Despite the identical

hierarchy that Jacobi MMF and Treelets recover, the Treelets objective function does not

67

minimize the approximation error of the matrix factorization, as in (5.15). In particular,

instead of minimizing the contribution of each rotation to the matrix approximation error,

the Treelets algorithm chooses I and O such that at each level ` the largest off-diagonal

entry of A`−1 is zeroed out. Thus, the objective is to simply construct a basis supported on

nested clusters of coordinates.

Jacobi MMFs with k ≥ 3 are even more interesting because their rotation hierarchy is

lattice–like — as shown in Figures 5.3(a) and (b), each U` in the hierarchy has k children

and k − 1 parents. When k ≥ 3, a single original coordinate, such as coordinate d6 in

Figure 5.3b, can contribute to multiple wavelets (e.g., ψ3
1 and ψ4

1 in the figure) with different

weights, determined by all the orthogonal matrices along the corresponding paths in the

MMF rotation hierarchy. Thus, higher order MMFs are more subtle than just a single

hierarchical clustering: by building a lattice–like hierarchy of subspaces they capture a softer

notion of hierarchy and can uncover multiple overlapping hierarchical structures in A.

Finally, at the beginning of this section we made the simplifying assumption that if U`

is an elementary rotation of oder k, we set {δ0, . . . , δL} so as to split off exactly one wavelet

are each level. However, we could set m < k, which corresponds to a more aggressive wavelet

elimination strategy and leads to a smaller overall number of levels in the factorization, i.e.,

L < n.

5.2.2 Parallel MMFs

Since MMFs exploit hierarchical cluster–of–clusters type of structure in matrices, towards the

bottom of the rotation hierarchy one expects to find rotations that act locally, within small

subclusters, and thus do not interact with each other. Parallel MMFs combine many of these

independent rotations into a single compound rotation, which yields factorizations that are

both more compact and more interpretable in terms of resolving A at a small number of dis-

tinct scales. Let’s assume that it is the last coordinate in each (i11, . . . , i
1
k1

), . . . , (im1 , . . . , i
m
km

)

68

Algorithm 2 GreedyParallelMMF(A): computing the binary (k = 2) greedy parallel
MMF of A with δ` = ⌈n2−`⌉.

Input: L and a symmetric matrix A = A0 ∈ Rn×n
set S0 ← [n] (the active set)
for (` = 1 to L){

set p← ⌊∣S`−1∣/2⌋
compute Wi,j =Wj,i as defined in (5.20) ∀i, j ∈ S`−1

find the matching {(i1, j1), . . . , (ip, jp)} minimizing ∑
p
r=1Wir,jr

for (r = 1 to p) set Or ← arg minO∈O(2) E
O
(ir,jr)

set U` ← ⊕(i1,j1)
O1 ⊕(i2,j2)

O2 ⊕ . . .⊕(ip,jp) Op
set S` ← S`−1/{i1, . . . , ip}
set A` ← U`A`−1U

⊺
`

}
Output: U1, . . . , UL and H = AL ↓HnSL

block that gives rise to a wavelet, therefore δ` decays by a constant factor of (k − 1)/k at

each level.

Proposition 3. If U` is a compound rotation of the form U` = ⊕I1O1 ⋅ ⋅ ⋅ ⊕ ImOm for some

partition I1 ⊍ ⋅ ⋅ ⋅ ⊍ Im = [n] with k1, . . . , km ≤ k, and some sequence of orthogonal matrices

O1, . . . ,Om, then the contribution of level ` to the MMF error obeys

E` ≤ 2
m

∑
j=1

⎛
⎜
⎝

kj−1

∑
p=1

[Oj[A`−1]Ij ,IjO
⊺
j]

2
kj ,p

+ [OjBjO
⊺
j]kj ,kj

⎞
⎟
⎠
, (5.19)

where Bj = [A`−1]Ij ,S
act
`−1/Ij

([A`−1]Ij ,S
act
`−1/Ij

)⊺.

The reason that (5.19), in contrast to (5.17), provides only an upper bound on E` is that

it double counts the contribution of the matrix elements {[A`]kj ,kj′
}m
j,j′=1

at the intersection

of pairs of wavelet rows/columns. Accounting for these elements explicitly would introduce

interactions between the Oj rotations, leading to a difficult optimization problem. Therefore,

to find the optimal partition I1 ⊍ ⋅ ⋅ ⋅ ⊍ Im and the optimal rotations O1, . . . ,Om we use the

right hand side of (5.19) as a proxy for E`.

As in the Jacobi MMF, the binary case is the simplest as well. Optimizing I1 ⊍ ⋅ ⋅ ⋅ ⊍ Im

69

reduces to finding the minimal cost matching amongst the indices in the active set Sact
`−1

with

cost matrix

Wi,j = 2 min
O∈O(2)

([O[A`−1](i,j),(i,j)O
⊺]22,1 + [OBO⊺]k,k) , (5.20)

where B = [A`−1](i,j),Sact
`−1/{i,j}

([A`−1](i,j),Sact
`−1/{i,j}

)⊺. This optimization problem is equiv-

alent to finding the maximum matching of a fully connected graph whose adjacency matrix

is W .

Recall that a matching of graph G(V,E) is a subset M ⊂ E of the edges, such that no two

edges in M share a common vertex in G. A graph G can have more than one matching. The

weight of a matching is the sum of the weights of the edges in M , so the maximum matching

is the one with the highest weight among all possible matchings of G. An exact solution to

the maximum matching problem can be found in time O(∣V ∣3), using a weighted version of

the famous Blossom Algorithm by Edmonds (1965). However, it is well known that a simple

greedy strategy yields a 2–approximation of the optimal solution in time O(∣V ∣).

Using this greedy strategy, we obtain a 2–approximation of the optimal matching by

setting (i1, j1) = arg mini,j∈Sact
`−1

Wi,j , then setting (i2, j2) = arg mini,j∈Sact
`−1/{i1,j1}

Wi,j , and

so on until the active set becomes empty. In general, the most expensive component of

MMF factorizations is forming the B matrices, which naively takes O(nk) time. However,

in practice, techniques like locality sensitive hashing could allow this (as well as the entire

algorithm) to run in time close to linear in n.

The resulting binary GreedyParallelMMF algorithm is shown in Algorithm 2, while

its corresponding rotation hierarchy is shown in Figure 5.3(c).

We remark that the fast Haar transform is nothing but a binary parallel MMF, while

the Cooley–Tukey Fourier transform is a degenerate MMF (in the sense that the MMF

dimensionality sequence is δ0 = ⋅ ⋅ ⋅ = δL) of a complex valued matrix.

70

5.2.3 Randomized MMFs

Both MMF algorithms described in the previous two sections need to solve a global opti-

mization problem at each level ` — they either find the set I (for elementary rotations,

Proposition 2) or the partition I1 ⊍ ⋅ ⋅ ⋅ ⊍ Im = [n] (for compound rotations, Proposition 3)

over the entire active set Sact
`

in order to construct the rotation matrix U` and eliminate J`

coordinates to maximally reduce the MMF residual (5.15). As the size n of the input matrix

A ∈ Rn×n grows, however, this combinatorial optimization problem quickly becomes forbid-

dingly expensive. Even in the case of second order elementary rotations in Jacobi MMFs

the complexity of level ` is O(n2) since at each level the algorithm performs an exhaustive

search over all (i1, i2) ∈ (Sact
`

)
2

possible pairs to find the rotation U` = Ui1,i2,θ. In the case

of second order compound rotations in parallel MMFs, the complexity is O(n3), since the

algorithm uses the Blossom Algorithm to perform vertex matching over the cost matrix W

(5.20). For higher order rotations the complexity of parallel MMFs is even worse. Addition-

ally, the rotation tree induced by Jacobi MMFs is not very well balanced, which naturally

ruins the multiresolution character of the MMF factorization.

In order to solve these problems, we introduce a randomized MMF algorithm (Algorithm

3) which, similarly to GreedyJacobiMMF, solves the MMF optimization problem greedily,

one rotation at a time, but rather than having to find the best rotation at each level, it

finds the best rotation locally, considering only a small k–neighborhood of coordinates when

deciding which tuple of coordinates to rotate at each level.

RandomizedMMF (Algorithm 3) is similar to GreedyJacobiMMF except that, rather

than finding the best k–tuple (i1, . . . , ik) (in the case of k = 2, the best pair) of coordinates in

the active set to construct a rotation with, it randomizes the process in the following steps,

for each level `:

(i) pick a coordinate i uniformly at random from the active set Sact
`

.

(ii) find the k − 1 other rows/columns i1, i2, . . . , ik−1 ∈ S
act
`

of A` which are the closest

to column [A`]∶,j in terms of inner product.

71

The k coordinates i1, . . . , ik−1 are selected according to some separable objective function

φ(i1, . . . , ik−1) related to minimizing the contribution to the final error. Specifically, we use

φ(i1, . . . , ik−1) =
k−1

∑
r=1

⟨[A`−1]∶,i, [A`−1]∶,ir⟩ . (5.21)

In other words, column [A`−1]∶,i forms a k–tuple with the k − 1 other columns that it has

the highest inner product (in absolute value) with.

(iii) perform the elementary k–point rotation U` = In−k ⊕(i,i1,...ik−1)
O`.

So, at each level RandomizedMMF has to compute only k − 1 inner products, which is a

significant reduction from the O(n2) complexity of finding the index k–tuple involved in U`

in Jacobi MMFs. Of course, RandomizedMMF is no different than GreedyJacobiMMF

as it requires computing the Gram matrix G` = A
⊺
`−1

A`−1 at a complexity of O(n3), but, as

before, that needs to be done only at the first level with subsequent Gram matrices computed

via the recursion G`+1 = U`G`U
⊺
`

.

Empirically, the advantage of Algorithm 3 becomes apparent when computing the MMF

decomposition of medium size matrices with rotation order k > 2. As we show later in the

experiments in Section 5.6, the approximation quality of Randomized MMFs is comparable

to that of Jacobi and parallel MMFs, while allowing the faster factorization of matrices of a

few thousand dimensions.

5.2.4 Computational Details

Problems of the form minO∈O(k) ∣∣OBO
⊺C ∣∣, called Procrustes problems, generally have easy

O(k3) time closed form solutions. Unfortunately, both (5.17) and (5.19) involve mixed lin-

ear/quadratic versions of this problem, which are much more challenging. However, the

following result shows that in the k = 2 case this may be reduced to solving a simple trigono-

metric equation.

72

Algorithm 3 RandomizedMMF: computing the randomized MMF of A.

Input: L and a symmetric matrix A = A0 ∈ Rn×n
set S0 ← [n] (the active set)
for (` = 1 to L){

select i ∈ S`−1 uniformly at random
find the k neighborhood (̄i1, . . . īk−1) of i in A`−1, as described in (ii) and (5.21) above
set O ← arg minO∈O(k) E

O
(̄i1,...̄ik−1)

set U` ← In−k ⊕(i, ī1,...̄ik−1)
O

set A` ← U`A`−1U
⊺
`

set p = argmaxj∈(i, ī1,...̄ik−1)
∣∣A∶,j ∣∣off-diag

set S` ← S`−1/{j}
}
Output: U1, . . . , UL and H = AL ↓HnSL

Proposition 4. Let A ∈ R2×2 be diagonal, B ∈ R2×2 symmetric and

O =

⎛
⎜
⎜
⎝

cosα − sinα

sinα cosα

⎞
⎟
⎟
⎠

.

Set

a = (A1,1 −A2,2)
2/4, b = B1,2,

c = (B2,2 −B1,1)/2, e =
√

b2 + c2,

θ = 2α, ω = arctan(c/b).

Then if α minimizes ([OAO⊺]2,1)
2 + [OBO⊺]2,2, then θ satisfies the equation

(a/e) sin(2θ) + sin(θ + ω + π/2) = 0. (5.22)

Putting A and B in diagonal form required by this proposition is easy. While (5.22) is

still not an explicit expression for α, it is trivial to solve with iterative methods.

Note that Jacobi MMF with k = 2 is very similar to the Treelets algorithm, which we

discussed in Section 4.2. Thus, it is worth elaborating on the general differences between

73

MMF algorithms from the previous sections and Treelets.

• In Treelets the choice of (i, j) coordinates to rotate and the rotation angle θ are chosen

based on an analogy with Jacobi’s algorithm. In contrast, in MMF they are optimized

to reduce the algorithms objective function, which is approximation error.

• Similar to MMF, we can construct a rotation tree for the Treelets algorithm. However,

the Treelets rotation tree has a very rigid structure — it is always binary, similar to

the GreedyJacobiMMF rotation tree in Figure 5.3(a). Empirically, on real data the

Treelets algorithm has a tendency to lead to what we call cascades, where a single

coordinate is repeatedly rotated against multiple other coordinates at subsequent levels.

The resulting rotation tree is not well balanced, but is degenerate in the sense that the

longest path through the tree has length close to n nodes. In practice, the rotation

tree induced by Jacobi MMFs could also suffer from this cascade problem, which of

course can ruin multiresolution. However, parallel and randomized MMFs avoid this

problem altogether.

• All the MMFs we have described so far extend to k ≥ 3, which enables us to find a

more subtle lattice–like MMF rotation hierarchy of the coordinates than just a single

rotation tree.

5.3 Theoretical Analysis

MMFs satisfy properties MRA2 and MRA3 of Section 2.7 by construction. Showing that

they also satisfy MRA1 or some analog thereof requires, roughly, to prove that the smoother a

function f ∶X→R is, the smaller its high frequency wavelet coefficients are. For this purpose

the usual notion of smoothness with respect to a metric d is Hölder continuity, defined

∣f(x) − f(y)∣ ≤ cHd(x, y)
α ∀x, y ∈X,

74

with cH and α > 0 constant. In classical wavelet analysis one proves that the wavelet

coefficients of (cH , α)–Hölder functions decay at a certain rate, for example, ∣⟨f,ψm
`
⟩∣ ≤

c′`α+β for some β and c′ (Daubechies, 1992).

As we have seen, MMFs are driven by the similarity between the rows/columns of the

matrix A. Therefore, relaxing the requirement that d must be a metric, we define d(i, j) in

terms of the ⟨Ai,∶,Aj,∶⟩ inner products.

d(i, j) = ∣⟨Ai,∶,Aj,∶⟩∣
−1
. (5.23)

One must also make some assumptions about the structure of the underlying space,

classically that X is a so-called space of homogeneous type (Deng and Han, 2009), which

means that for some constant chom,

Vol(B(x,2r)) ≤ chom Vol(B(x, r)) ∀x ∈X, ∀r >0.

To capture the analogous structural property for matrices, we introduce a concept of rank–

homogeneous matrices, which has connections to the R.I.P condition in compressed sensing

(Candès and Tao, 2005).

Definition 8. We say that a symmetric matrix A ∈Rn×n is Λ–rank homogeneous up to

order K̄, if for any S ⊆ [n] of size at most K̄, letting Q = AS,∶A∶,S, setting D to be the

diagonal matrix with Di,i = ∣∣Qi,∶∣∣1, and Q̃ = D−1/2QD−1/2, the λ1, λ1, . . . , λ∣S∣ eigenvalues

of Q̃ satisfy Λ < ∣λi∣ < 1 −Λ, and furthermore c−1
T ≤Di,i ≤ cT for some constant cT .

Recall that the spectrum of the normalized adjacency matrix of a graph is bounded in

[−1,1] (Chung, 1997). Definition 8 asserts that if we form a graph with vertex set S and

edge weights ⟨Ai,∶,Aj,∶⟩, its eigenvalues in absolute value are bounded away from both 0 and

1. Definition 8 then roughly corresponds to asserting that A does not have clusters of rows

that are either almost identical (parallel) (an incoherence condition) or completely unrelated

75

(orthogonal). This allows us to now state the matrix analog of the Hölder condition.

Theorem 1. Let A ∈Rn×n be a symmetric matrix that is Λ–rank homogeneous up to order

K̄ and has an MMF factorization A = U⊺1 . . . U
⊺
LHUL . . . U1. Assume ψ`m is a wavelet in

this factorization arising from row i of A`−1 supported on a set S of size K ≤ K̄ and that

∣∣Hi,∶∣∣
2 ≤ ε. Then if f ∶ [n] → R is (cH ,1/2)–Hölder with respect to 5.23, then its wavelet

coefficients obey

∣ ⟨f,ψ`m⟩ ∣ ≤ cT
√
cHcΛε

1/2K (5.24)

with cΛ = 4/(1 − (1 − 2Λ)2).

Here ε is closely related to the MMF approximation error and is therefore expected to be

small. Equation (5.24) then says that, as we expect, if f is smooth, then its ”high frequency”

local wavelet coefficients (low K and `) will be small.

5.4 Proofs of Propositions and Theorems

Here we provide proofs for the propositions and theorems introduced in previous sections.

Proof of Proposition 1. By the nestedness of Sact
0 ⊇ Sact

1 ⊇ ⋅ ⋅ ⋅ ⊇ Sact
L , for some sequence

of permutation matrices Π1,Π2, . . . ,ΠL, H decomposes recursively as

[H]Sact
` ,Sact

`
= Π`

⎛
⎜
⎜
⎜
⎝

[H]Sact
`+1,S

act
`+1

[H]Sact
`+1,J`+1

[H]J`+1,S
act
`+1

[H]J`+1,J`+1

⎞
⎟
⎟
⎟
⎠

Π⊺
` .

Unwrapping this recursion tells us that ∣∣H ∣∣2
residual

is equal to

L

∑
`=1

[∣∣HJ`,Sact
`

∣∣2Frob + ∣∣HSact
` , J`

∣∣2Frob + ∣∣HJ`,J` ∣∣
2
off-diag].

However, since the rotations U`+1, . . . , UL leave span({ei∣i ∈ [n]/Sact
`

}) invariant,

∣∣[A`]J`,Sact
`

∣∣2Frob = ∣∣[A`+1]J`,S
act
`

∣∣2Frob = ⋅ ⋅ ⋅ = ∣∣[AL]J`,Sact
`

∣∣2Frob = ∣∣[H]J`,S
act
`

∣∣2Frob.

76

By symmetry, ∣∣[H]Sact
` ,J`

∣∣2
Frob

= ∣∣[H]J`,S
act
`

∣∣2
Frob

. Similarly, ∣∣[A`]J`,J` ∣∣
2
off-diag

= . . .

= ∣∣[H]J`,J` ∣∣
2
off-diag

.

Proof of Proposition 2. Since J = {ik}, by Proposition 1

E` = 2
k−1

∑
p=1

[U`A`−1U
⊺
`]

2
ik,ip

+ 2∣∣[U`A`−1U
⊺
`]ik,S

act
`

∣∣2.

The first term can be written 2∑k−1
p=1 [O[A`−1]I,IO

⊺]2
k,p
, while the second term is

2∣∣[O[A`−1]I,Sact
`

[U`]
⊺

Sact
` ,Sact

`

]k,∶∣∣
2

= 2 [O[A`−1]I,Sact
`

[U`]
⊺

Sact
` ,Sact

`

[U`]Sact
` ,Sact

`
[A`−1]

⊺

I,Sact
`

O⊺]
k,k

= 2[O[A`−1]I,Sact
`

[A`−1]
⊺

I,Sact
`

O⊺]k,k = 2[OBO⊺]k,k.

Proof of Proposition 3. Analogous to the proof of Proposition 2, but summed over

each I1 × I1, . . . , Im × Im block.

Proof of Proposition 4. We want to minimize

φ(α) =

⎛
⎜
⎜
⎜
⎝

[Oα

⎛
⎜
⎜
⎝

A1 0

0 A2

⎞
⎟
⎟
⎠

O⊺α]
2,1

⎞
⎟
⎟
⎟
⎠

2

+ [Oα

⎛
⎜
⎜
⎝

B1,1 B1,2

B2,1 B2,2

⎞
⎟
⎟
⎠

O⊺α]
2,2

.

Expanding, we get

φ(α) = ((A1 −A2) sinα cosα)2 +B1,1(sinα)
2 + 2B1,2 sinα cosα +B2,2(cosα)2 =

= (
A1−A

′

2
2)

2
(sin(2α′))2 +B1,2 sin(2α) + (sinα′)2B1,1 + (cosα′)2B2,2.

Rewriting the second two terms as

((sinα)2 + (cosα′)2)(B1,1 +B2,2)

2
+

((sinα)2 − (cosα′)2)(B1,1 −B2,2)

2

77

gives

φ(α) = (
A1−A2

2
)

2
(sin(2α))2 +B1,2 sin(2α) +

B1,1 +B2,2

2
+
B2,2 −B1,1

2
cos(2α).

Introducing d = (B2,2−B1,1)/2 and the other variables a, b, c, e and θ gives the new objective

function

ψ(θ) = a(sin θ)2 + b sin θ + c cos θ + d.

Setting the derivative with respect to θ zero,

2a sin θ cos θ + b cos θ − c sin θ = 0.

Again using sin(2x) = 2 sinx cosx,

a sin(2θ) + b cos θ − c sin θ = 0.

Now letting e =
√
b2 + c2 and ω = arctan(c/b)

a sin(2θ) + e(cosω cos θ − sinω sin θ) = 0.

Using cos(x + y) = cosx cos y − sinx sin y,

(a/e) sin(2θ) + cos(θ + ω) = 0,

which is finally equivalent to (5.22).

Proof of Theorem 1. Let ψ be a specific wavelet ψ`m, with support S = {s1, s2, . . . , sK} =

supp(ψ) ⊆ [n], fS and ψS be the restriction of f and ψ to S regarded as a vectors, and Q,D

78

and Q̃ be defined as in Definition 8. The Hölder property then gives

f⊺S L̃fS =
K

∑
i,j=1

Q̃i,j(f(si) − f(sj))
2 ≤

K

∑
i,j=1

cTQi,j(f(si) − f(sj))
2 ≤ cT cHK

2, (5.25)

where L̃ = I−Q̃ is the normalized Laplacian. At the same time, if ψ`m comes from row/column

i of A`, then by (5.6), [A`]∶,i = U` . . . U1Aψ, and therefore

ψ⊺SQ̃ψS ≤ cTψ
⊺
SQψS ≤ cTψ

⊺
SAS,∶A∶,SψS = cT ∣∣Aψ∣∣

2 = cT ∣∣[A`]∶,i∣∣
2 = cT ∣∣H∶,i∣∣

2 ≤ cT ε (5.26)

Clearly, Q̃ and L̃ share the same normalized eigenbasis {v1, v2, . . . , vn}. Letting {λ1, λ2, . . . , λn}

be the corresponding eigenvalues, fi = ⟨fS , vi⟩ and ψi = ⟨ψS , vi⟩ and taking any γ > 0

K

∑
i=1

(
√
γλiψi −

1
√
γλi

fi)
2
≥ 0, (5.27)

which implies

⟨f,ψ⟩ = ⟨fS , ψS⟩ ≤
1

2
[γψ⊺SQ̃ψS + γ

1/2f⊺SQ̃
−1fS] .

The first term on the r.h.s of this inequality is bounded by (5.26), while by (5.25) for any

cΛ ≥ 4/(1 − (1 − 2Λ)2),

f⊺SQ̃
−1fS =

K

∑
i=1

1

λi
f2
i ≤ cΛ

K

∑
i=1

(1 − λi)f
2
i = = cΛf

⊺
S L̃fS ≤ cT cHcΛK

2

giving ⟨f,ψ⟩ ≤ cT (γε + γ
−1cHcΛK

2). Optimizing this for γ yields ⟨f,ψ⟩ ≤ cT
√
cHcΛε

1/2K.

By flipping the − sign in (5.27) to +, a similar lower bound can be derived for −⟨f,ψ⟩.

5.5 Applications of MMF

MMF has a variety of potential applications which we briefly review below. This thesis dives

deep into the last application of MMF — as a matrix compression tool — which is the focus

79

of the following chapter.

• Sparse approximations: Exploring sparsity, both theoretically and empirically, is

one of the key developments in machine learning in recent years. This trend is trig-

gered largely by the continuously growing volume of real datasets and the need for

computational efficiency and scalability of traditional machine learning algorithms.

Constructing dictionaries or a hierarchically sparse basis, as we saw in Section 4.5, are

crucial for the sparse representation of signals. In this respect MMF can be used to

produce a data adapted sparse wavelet basis for sparse approximations on graphs or

other datasets.

• Clustering: MMF can be used for hierarchical clustering, similarly to the way the

Treelets algorithm recovers a binary tree on the coordinates of covariance matrices.

Since MMF recovers a more fine tuned hierarchical structure, namely one consisting

not of a single hierarchical tree, but a lattice–like hierarchy of multiple interleaving

trees. As a result, MMF is more well suited for capturing the higher order dependencies

between variables in covariance matrices or vertices in a graph Laplacian, for example.

• Community structure: One of the main reasons uncovering community structure

in graphs, be it biological, social or physical networks, is quite challenging is the fact

that communities are present at different scales and form overlapping hierarchies (see

(Fortunato, 2010) for review of community detection algorithms). Thus, in order to

determine the best community structure (by some metric) in a computationally efficient

way, one needs to find a judicious way of finding these hierarchies. When applied to

the (normalized) graph Laplacian, MMF performs very localized (binary or of higher

order) rotations on the matrix and finds multiple overlapping hierarchies of the vertices.

Hence, it is particularly well suited for the task of finding communities in graphs.

• Matrix compression: As shown in Figure 5.1, if A is an operator, MMF provides a

computationally efficient way of compressing A to size δL × δL (plus additional n − δL

80

diagonal elements) and thus, provides a way of efficiently applying the operator A to

matrices and vectors in downstream applications. Chapter 6 provides an overview of

compression for matrices and large scale data and empirically demonstrates that MMF

can be used for compression by comparing MMF to other compression schemes on

several datasets.

It is important to note that depending on the application, one of the MMF algorithms intro-

duced above might be more appropriate than the others. Each MMF algorithm is intended

to be used for a different regime, determined by the application and the efficiency require-

ments. For example, while a randomized MMF might be more appropriate for fast matrix

compression, a parallel MMF might produce a better sparse wavelet basis. In the following

section we show various experiments demonstrating how the various MMF algorithms can

be used for the applications listed above.

5.6 Experiments

We measure the Frobenius norm error EFrob incurred by MMF by summing the `2 norm of

the rows/columns (except for their diagonal elements) that are designated wavelets at each

` level of the factorization. According to Proposition 1, this is equivalent to the sum

EFrob = E =
L

∑
`=1

E` = ∣∣A −U⊺1 . . . U
⊺
LHUL . . . U1∣∣Frob = ∣∣A − Ã∣∣Frob, (5.28)

where we introduce the shorthand U⊺1 . . . U
⊺
LHUL . . . U1 = Ã. Recall the error E` incurred at

each level is computed differently depending on whether the rotations involved are elementary

or compound (see Propositions 2 and 3). In all the experiments in this chapter the error is

normalized in the form EFrob/∣∣A∣∣Frob.

In some of the experiments, when necessary, the MMF wavelets are typically ordered in

increasing frequency. Algorithms 1 and 3 provide a natural ordering as in each subsequent

level they split off a single wavelet, with each wavelet being increasingly more global. How-

81

ever, Algorithm 2, by virtue of its parallelism, recovers multiple wavelets at a given level and

provides no explicit ordering of the wavelets within a level. So whenever we need to order

the wavelets recovered by Algorithm 2, we order them level by level such that the wavelets

within each level are ordered in increasing order of the amount of mass they bring to the

diagonal of A.

5.6.1 Comparison to Treelets

We evaluate the performance of Jacobi MMFs (Algorithm 1) by comparing it with Treelets on

two real datasets. Note that in the greedy binary setting, similarly to the Treelets algorithm,

MMF removes one dimension at a time, and thus, in both algorithms the off-diagonal part

of the rows/columns designated as wavelets contributes to the error EFrob. The first matrix

is based on the well known Zachary’s Karate Club (Zachary, 1977) social network consisting

of 34 vertices and 78 edges. We set A to be the diffusion kernel A = e−αL with α = 0.01.

The second matrix is constructed using simulated data from family pedigrees, as described

by Crossett et al. (2013) — A ∈ R50×50 is symmetric matrix in which each Ai,j element

contains the genetic kinship coefficient between individual i and j. Figure 5.4 shows that

GreedyJacobiMMF outperforms Treelets for a wide range of compression ratios for both

datasets, albeit after a certain level of compression (i.e., when ∣S`∣ decreases sufficiently in

the karate club case), it is sometimes prone to higher errors in comparison to Treelets. The

better approximation quality of MMF, as measured by EFrob, is not surprising since the

Treelets algorithm, unlike MMFs, is not optimized to reduce the approximation error of the

decomposition A ≈ U⊺1U
⊺
2 . . . U

⊺
LHUL . . . U2U1.

5.6.2 Comparison of MMF Algorithms

As highlighted in Section 5.2.2, finding the optimal compound rotations in binary parallel

MMFs is equivalent to finding the optimal partition I1 ⊍ I2 ⊍ ⋅ ⋅ ⋅ ⊍ Im of the set [n] by

82

(a) (b)

Figure 5.4: Comparison with Treelets. Frobenius norm error EFrob of compressing
matrices with GreedyJacobiMMF (with k = 2) vs. the Treelets algorithm as a function of
the dimension of the core HSL,SL that A is compressed down to. (a) A is constructed from
Zachary’s Karate Club graph (Zachary, 1977), as described in the text. (b) A is a genetic
relationships matrix.

(a) Kronecker matrix (b) dexter

Figure 5.5: GreeyParallelMMF vs. RandomizedMMF. Frobenius norm error EFrob of
compressing matrices with GreedyParallelMMF vs. RandomizedMMF as a function
of the dimension of the core HSL,SL that A is compressed down to. For both algorithms the
rotation order is k = 2. (a) A is a 1024× 1024 Kronecker matrix, constructed as described in
the text. (b) A is the dexter dataset from Table 6.1.

applying a graph matching algorithm, such as the Blossom Algorithm (Edmonds, 1965).

However, since the computational cost of finding the optimal matching is prohibitively high,

the randomized version of MMF (Algorithm 3) is often preferred in practice. As Figure 5.5

demonstrates, the approximation error incurred by binary parallel MMF is comparable to

the error incurred by the randomized MMF. Hence, the randomized MMF can be used in

place of the exact MMFs when the matrix size n becomes too large.

83

(a) (b)

Figure 5.6: MMF rotation order. Frobenius norm error EFrob of compressing matrices
with the RandomizedMMF with different orders k, as a function of the dimension of
the core HSL,SL that A is compressed down to. (a) A is a 1024 × 1024 Kronecker matrix,
constructed as described in the text. (b) A is the dexter dataset from Table 6.1.

5.6.3 Effect of MMF Rotation Order

The randomized MMFs can be further refined using rotations of order higher than k = 2.

Figure 5.6 shows a comparison of randomized MMF (Algorithm 3) with k = 2 vs. k ≥ 3.

Recall that for k = 2, MMF performs Givens rotations, computable in closed form. When

k ≥ 3, on the other hand, MMF involves the diagonalization of the matrix B in Proposition

2, which does not have a closed form solution but can be computed by eigedecompisition

instead. Accordingly, the repeated calls to an eigendecomposition routine inside MMF itself

lead to slower wall clock time of the randomized MMF. Thus, MMFs with binary rotations

are preferable whenever possible.

Regardless of the levels of compression, as the rotation order k increases, the MMF

approximation error EFrob goes down on both synthetic and real data (Figure 5.6). This is

not surprising because as the order of the rotations increases MMF becomes more and more

similar a matrix diagonalization procedure. In fact, an MMF with rotations order k = n

is equivalent to a performing a complete diagonalization of A ∈ Rn×n. More importantly,

however, the approximation error of the binary randomized MMF is still comparable to

rotations of order k = 10. This shows that binary MMFs are a viable alternative to higher

order MMFs.

84

5.6.4 Recovering Matrix Structure with MMF

As illustrated in Figure 5.3, the MMF rotation hierarchy can take different forms depending

on the type of MMF. Figure 5.7 shows that the rotation tree of the GreedyParallelMMF

algorithm can indeed recover the hierarchical structure of the underlying matrix. In this

experiment A is the graph Laplacian of a Kronecker graph model, which has recursive self–

similar/fractal structure.

The Kronecker product graph K1,κ on Kκ
1 nodes is defined as

K1,κ =K1 ⊗K1 ⊗ ⋅ ⋅ ⋅ ⊗K1
´¹¹¸¹¹¶

κ times

=Kκ−1 ⊗K1, (5.29)

where K1 is the so-called initiator adjacency matrix of probabilities. The recursive construc-

tion of Kronecker product graphs is based on the assumption that communities in the graph

grow recursively as well — nodes in a community are recursively expanded into miniature

copies of the community itself (Leskovec et al., 2010).

In Figures 5.7(a) and (b) we set κ = 10 and 4, respectively, while the initiator matrix

in both cases is K1 = [1,0.1; 0.1,1]. We modify definition (5.29) to K1,κ = Kκ−1 ⊗ (K1 +

[0,0.1; 0.1,0]) — note that increasing the off-diagonal entries of the initiator matrix in each

recursive step does not change the the overall fractal structure of K1,κ, but instead makes

it even more fine grained.

Figure 5.7 shows that approximating A = K1,10 by GreedyParallelMMF not only

preserves the structure of A but, more importantly, MMF can recover the structure of the

Kronecker product graph itself.

Next, we shuffled A by permuting its columns/rows uniformly at random. The shuffled

matrix is denoted by Ap,p, where p is a random permutation of the set [n]. The resulting

matrix Ap,p is shown in the third column in Figure 5.7. We ran MMF on Ap,p and reordered

the rows/columns of Ap,p according to the MMF rotation hierarchy obtained by running

GreedyParallelMMF on Ap,p. In particular, we order the leaves of the rotation tree by

85

depth first search traversal of the tree. Recall that all of the matrix row/column indices lie on

the leaves of the rotation tree and the intermediary nodes denote the U` rotations. Note that

the depth first search ordering is not unique due to the so-called “sibling exchange invariance”

(each node has two children, but the left/right child order is irrelevant as rotations ⊕(di,dj)
O

and ⊕(dj ,di)
O are identical for the purposes of MMF).

Additionally, for the smaller of the two matrices in Figure 5.7(c) we show the rotation

tree associated with Ã. Each pair of indices (i, j) in the tree corresponds to ⊕(di,dj)
O (recall

discussion of MMF rotation hierarchies in Section 5.1). One possible leaf ordering for the

tree shown in the figure is [d12, d13, d14, d15, d4, d5, d6, d7, d10, d11, d8, d9, d0, d1, d2, d3].

When the rows/columns of Ap,p are reordered according to the MMF rotation tree, the

implicit fractal structure of the shuffled matrix Ap,p becomes apparent (see the plots in the

fourth column of Figure 5.7). In this sense, MMF “discovers” the underlying fractal structure

regardless of the fact that the matrix Ap,p on which MMF was performed was shuffled and

had no obvious structure.

5.6.5 Comparison of MMF and PCA

Since MMF wavelets can be interpreted as a hierarchical basis, it is natural to compare the

MMF basis with the basis recovered by PCA (5.2). We consider a dataset consisting of

200 points in R2 which is the union of 50 realizations of four Gaussian random variables

sampled from normal distribution with means [1.4,0.6], [0.6,1.4], [−2,−2], [−2.8,−2.8] and

standard deviations all equal to 0.25. The resulting graph, plotted in Figure 5.8(c), has a

hierarchical, nested, clusters–of–clusters structure in the sense the each of the two pairs of

Gaussian clusters can be interpreted as part of a single Gaussian cluster with larger standard

deviation. From this data we construct a pairwise distance matrix A, such that for each (i, j)

pair of points Ai,j = e
−∣∣xi−xj ∣∣

2/0.52 . We perform second order parallel MMF (Algorithm 2)

on A and plot the resulting top MMF wavelets in Figure 5.8(a). Figure 5.8(b), on the other

86

(a)
A Ã Ap,p (A shuffled) Ap,p reordered by MMF

(b)
A Ã Ap,p (A shuffled) Ap,p reordered by MMF

(c)

Figure 5.7: MMF on structured matrices. Two Kronecker
product matrices, denoted by A, of different sizes and their ap-
proximations, denoted by Ã, by second order GreedyParal-
lelMMF. The third column shows the shuffled matrix A[p,p].
The fourth column shows A[p,p] reordered according to the MMF

rotation tree. For the smaller matrix, in (c), we also show the
MMF rotation tree Ã.

hand, shows the top eigenvectors of A. The eigenvectors are ordered in increasing order of

their corresponding eigenvalues and so, the eigenvector with the highest eigenvalue is the

one corresponding to index i = 199. The MMF wavelets, on the other hand, are ordered

in increasing level, as described in the very beginning of Section 5.6. Note that MMF is

not only able to approximate the top few eigenvectors, but even the more localized, higher

frequency MMF wavelets (e.g., wavelets with indices i = 186,183, and even the one with

i = 50) are able to recover local structure in the graph. On the other hand, the support of

87

(a) MMF wavelets

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.16

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

i = 199

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

i = 197

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.09

−0.06

−0.03

0.00

0.03

0.06

0.09

0.12

0.15

i = 196

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.12

−0.08

−0.04

0.00

0.04

0.08

0.12

i = 192

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.24

−0.18

−0.12

−0.06

0.00

0.06

0.12

0.18

0.24

i = 190

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.08

−0.04

0.00

0.04

0.08

0.12

0.16

0.20

0.24

i = 186

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.18

−0.12

−0.06

0.00

0.06

0.12

0.18

0.24

0.30

i = 183

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.18

−0.12

−0.06

0.00

0.06

0.12

0.18

0.24

i = 50
(b) PCA eigenvectors

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.16

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

i = 199

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.150

−0.125

−0.100

−0.075

−0.050

−0.025

0.000

0.025

i = 197

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.12

−0.09

−0.06

−0.03

0.00

0.03

0.06

0.09

0.12

i = 196

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.16

−0.12

−0.08

−0.04

0.00

0.04

0.08

0.12

i = 192

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

i = 190

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.30

−0.24

−0.18

−0.12

−0.06

0.00

0.06

0.12

0.18

i = 186

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.30

−0.24

−0.18

−0.12

−0.06

0.00

0.06

0.12

0.18

i = 183

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

i = 50
(c) dataset

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

Figure 5.8: MMF wavelets vs. eigenvectors. (a) Wavelets
recovered by second order parallel MMF on the distance matrix
of the dataset of Gaussian random variables, shown in (c) and
described in Section 5.6.5. (b) The eigenvectors obtained by PCA
on the same matrix. In all plots the graph vertices are colored
according to the MMF wavelets or the PCA eigenvectors and the
index i corresponds to the i–th wavelet/eigenvector.

88

A Ã (by MMF) Ã (by PCA)

Figure 5.9: Matrix reconstruction by MMF vs. PCA. Approximation Ã of a Kronecker
product matrix A by GreedyParallelMMF and PCA.

the corresponding eigenvectors is not well localized in the vertex domain of the graph.

We also compare how well MMF can approximate a matrix in comparison to PCA and

show the matrix reconstruction results in Figure 5.9. In this experiment use the same

modified Kronecker matrix A = K1,κ with κ = 10 that we described in Section 5.6.4. The

resulting matrix is of size 1024 × 1024. In the MMF case it is compressed down to core

size n/4 × n/4. Accordingly, the rank parameter in PCA (5.2) was set to r = n/4. The

reconstruction of A by MMF is astonishingly good, while the PCA reconstruction has none

of the fractal structure present in A. Qualitatively, MMF outperforms PCA in terms of the

amount of detail it preserves, even when the dimension of core is just one quarter of the

dimension A.

5.6.6 MMF on Mixture Models

Next, we generate several synthetic datasets using linear mixture models, which in certain

cases gives rise to covariance matrices with block structure, and investigate the effect the

underlying covariance matrix structure has on the MMF wavelets. For this set of experiments

we closely follow the examples presented by Lee et al. (2008). Consider a linear mixture

model with K components which has additive noise — each multivariate observation x ∈ Rp

89

(a) uncorrelated factors, nonoverlapping loading vectors

(b) correlated factors, nonoverlapping loading vectors

(c) uncorrelated factors, overlapping loading vectors

Figure 5.10: MMF on mixture models. (a) and (b) Comparison of principle components
(left) and MMF wavelets (middle) on two different mixture models with their corresponding
covariance matrices (right). (c) Loading vectors for the mixture model (left), the corre-
sponding covariance matrix (left) and some of the recovered MMF wavelets (middle), shown
in different colors. This set of experiments was performed using binary GreedyParal-
lelMMF.

90

has the form

x =
K

∑
i=1

uivi + σz, (5.30)

where the so-called loading vectors vi ∈ Rp are linearly independent, the components/factors

ui are random (though not necessarily independent) variables with variance σ2
i , σ is the noise

level and z is a p–dimensional random vector whose entries are N (0,1). In the unsupervised

setting we are given n observations x1, x2, . . . , xn ∈ Rp sampled according to (5.30) and the

goal is to infer the number of components in the mixture (K) or the structure of the loading

vectors vi, which are unknown. Inferring the structure of vi can be complicated by the

correlations between the components u1, . . . , uK , by their variance or by an overlap between

the loading vectors v1, . . . , vK . Borrowing the biological example by Lee et al. (2008), if

x ∈ Rp is the measured expression levels of p genes in a sample, ui can be thought of as the

intrinsic activity of pathway i and each binary vector vi marks the sets of genes belonging

to that pathway. Lee et al. (2008) present three mixture models of increasing difficulty.

In each of the three cases we run MMF or PCA on the covariance matrix of the mixture

model.

(a) Uncorrelated factors and nonoverlapping loading vectors. We sample n = 1000

points in R10 from the mixture model (5.30) with nonoverlapping loading vectors and

factors, respectively,

v1 = [1,1,1,1,0,0,0,0,0,0]⊺, (5.31)

v2 = [0,0,0,0,1,1,1,1,0,0]⊺,

v3 = [0,0,0,0,0,0,0,0,1,1]⊺,

u1 ∼ N (0, σ2
1), u2 ∼ N (0, σ2

2), u2 ∼ N (0, σ2
3).

We set σ2
1 = 290, σ2

2 = 300, σ2
3 = 310. The resulting population covariance matrix

is Σ = C + δ2Ip, where C is a block diagonal matrix. We set σ = 1, resulting in

91

σ1, σ2, σ3 >> σ. As Figure 5.10(a) shows, both PCA and MMF are able to recover the

three hidden loading vectors. This is a trivial example for PCA as the three loading

vectors coincide exactly with the three leading principal components.

(b) Correlated factors and nonoverlapping loading vectors. We sample n = 1000

points in R10 from the mixture model (5.30) with the nonoverlapping loading vectors

given in (5.31) and the factors

u1 ∼ N (0, σ2
1), u2 ∼ N (0, σ2

2), u3 = α1u1 + α2u2.

The noise, variance, α1 and α2 parameters are set according to (Lee et al., 2008; Lee,

2006), again resulting in σ1, σ2, σ3 >> σ. The covariance matrix Σ ∈ R10×10 is no longer

block diagonal, as in the model shown in (a), but has a more complex block structure

shown in Figure 5.10(b). As a result of the correlation between the factors ui, the

loading vectors of the block model do not coincide with the principle eigenvectors of

Σ and therefore PCA cannot be used to infer the structure of the loading vectors. For

example, figuring out the structure of the loading vectors from the top three principal

components (Figure 5.10(b), left) is difficult. In particular, the third principal vector is

particularly sensitive to the correlations. Even sparse PCA methods (Zou et al., 2006;

Jenatton et al., 2010) fail to find the correct structure, unless the number of variables

in each block is specified. In contrast, by performing binary parallel MMF (Algorithm

2) on Σ we are able to find the underlying structure of the three loading vectors in this

unfavorable for (sparse) PCA scenario (Figure 5.10(b), middle). This example shows

that, while a global approach, such as PCA, has limitations even when n > p, MMF is

able to find an adequate basis for this model.

(c) Uncorrelated factors and overlapping loading vectors. In the final and most

challenging example the loading vectors v1 and v2 overlap, the background noise level

is high and n < p (specifically, n = 100, p = 500). In particular, the loading vectors are

92

defined as

v1 = I(B1) + I(B2), v2 = I(B2) + I(B3), v3 = I(B4),

where I(B) is the indicator function defined on the set B and

B1 = {0,1, . . . ,9},

B2 = {10,11, . . . ,49},

B3 = {50,51, . . . ,99},

B4 = {200,201, . . . ,399}.

The resulting loading vectors, some of which overlap in the coordinate block B2, are

plotted in Figure 5.10(c). The factors are given by u1 = ±0.5 with equal probability,

u2 = I(x < 0.4), and u3 = I(x < 0.3), where I(.) is the indicator function and x is an

independent uniform random variables in [0,1]. The block structure of the resulting

covariance matrix Σ500×500 is shown in Figure 5.10(c). When set as described, the

factors u1, u2, u3 have variances 0.25,0.24,0.21, respectively. The noise level in (5.30)

is set to σ = 0.5 — note that this means the noise variance, σ2 = 0.25, is on the same

order as the variance of each of the three factors ui, which makes the inference task

particularly hard. Here binary parallel MMF is again able to infer the structure of

the loading vectors. We ran Algorithm 2 on Σ until it is compressed down to a 2 × 2

core and the middle panel of Figure 5.10(c) shows some of the MMF wavelets. The

MMF wavelet shown in red is supported on the set B4, which is exactly the support

of the loading vector v3. The MMF wavelets shown in black and blue, on the other

hand, can distinguish between blocks B1,B2 and B3, i.e., the support of vectors v1 and

v2. The more global wavelet (shown in yellow) is approximately piecewise constant on

all four blocks and can distinguish between v2 (the wavelet values are positive on the

93

0 2 4 6 8 10 12 14 16
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

ψ−30

0 2 4 6 8 10 12 14 16
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

ψ−31

0 2 4 6 8 10 12 14 16
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

ψ−32

0 2 4 6 8 10 12 14 16
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

ψ−33

0 2 4 6 8 10 12 14 16
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

ψ−34

0 2 4 6 8 10 12 14 16
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

ψ−35

0 2 4 6 8 10 12 14 16
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

ψ−36

0 2 4 6 8 10 12 14 16
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

ψ−37

0 2 4 6 8 10 12 14 16
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

ψ−20

0 2 4 6 8 10 12 14 16
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

ψ−21

0 2 4 6 8 10 12 14 16
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

ψ−22

0 2 4 6 8 10 12 14 16
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

ψ−32

0 2 4 6 8 10 12 14 16
−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

ψ−10

0 2 4 6 8 10 12 14 16
−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

ψ−11

0 2 4 6 8 10 12 14 16
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

ψ0
0

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

61e−13+2.5e−1

φ0
0

Figure 5.11: Haar wavelets with MMF. Reconstruction of the Haar wavelet transform
on the diffusion matrix of a cycle graph on n = 24 vertices by binary parallel MMF.

coordinate blocks B2 and B3) and v3 (the wavelet values are mostly negative on the

coordinate block B4).

These three mixture models show that PCA is only able to infer the structure of the loading

vectors in the first and simplest example, whereas MMF performs well in all three exam-

ples, requiring no prior knowledge of any structural information about the loading vectors.

Therefore, MMFs can be a valuable unsupervised learning tool for discovering structure in

matrices with underlying structure, such as covariance matrices.

94

5.6.7 MMF Wavelets

The extent to which MMF can recover a ”good” wavelet basis can have important conse-

quences for downstream applications. In the examples below, we perform MMF on several

synthetic graphs. In particular, we are interested in matrices derived from graphs which

have some underlying structure.

Example 1: Haar Wavelets. Recall from our discussion in Section 4.4 that the Haar

wavelet transform diagonalizes matrices with nested (hierarchical) structure of the form

(4.13) into (4.14), where the size of the set T` has dimensionality 2`0 ,2`0−1, . . . ,1. The

Haar wavelet transform is equivalent to a second order parallel MMF in which Sact
`

= T`

and the dimensionality δ` of Sact
`

is halved at each level. The structure of the matrix

A in equation (4.14) suggests that Haar wavelets are particularly well suited to spaces

with tree–like metric structure, and therefore it is natural to ask whether MMF can

recover the Haar system in this case. To answer that question, we set A ∈ R2m×2m

to be the diffusion matrix A = e−αL of a cycle graph Cn on n = 2m vertices whose

graph Laplacian is L. In particular, we set m = 4 and α = 0.1. We compute the binary

parallel MMF up to depth L = 5 (by Algorithm 2), which results in fifteen wavelets and

a single scaling function. As Figure 5.11 shows, MMF completely recovers the Haar

wavelet transform.

Example 2: Hypercube Graph. Recall from Section 4.3 that the Fourier transform

of a function on the d–dimensional cube is called the Hadamard transform. Similar to

the Haar transform, this is another case where MMF recovers a well known algorithm.

Equation (4.12) is not quite an MMF, because H, and consequently W1, . . . ,Wd, are

not rotations (they are orthogonal, but det(H)=−1). However, if we swap the columns

of H in the form

95

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

1011

1101

1000

0000

1010

0111

0101

1111

0100

1001

0110

0010

00111110

00011100

Figure 5.12: Wavelets recovered by binary GreedyParallelMMF on the diffusion matrix
of the 4–cube graph. The vertex numbers are shown in binary.

H̃ = ΩH =
1

√
2
(

1 1
1 −1

) , Ω = (
0 1
1 0

) , (5.32)

we can cast the Hadamard transform to a type of MMF. Using (5.32), we get

f ↦ H̃f, H̃ = H̃⊗d = W̃d W̃d−1 . . . W̃1, W̃k = I2d−k⊗H̃⊗I2k−1 ,

which is equivalent to the original (4.10) up to permutation of the entries of the result.

Specifically, H̃f = Ω⊗dHf , and at the same time the Laplacian of the hypercube

decomposes into

∆ = W̃⊺
1 W̃

⊺
2 . . . W̃

⊺
d D̃ W̃d . . . W̃2W̃1, with D̃ = Ω⊗dDΩ⊗d,

96

which is a binary order parallel MMF. In Figure 5.12, we consider the diffusion kernel

A = e−αL of a 4–cube graph with graph Laplacian L and α = 0.01, apply Algorithm 2

to compute the binary parallel MMF of A up to depth L = 4 and plot all the wavelets.

For ease of notation each of the 16 vertices are labelled in binary.

Example 3: Cayley Graph. In the last example we run binary parallel MMF on

the graph Laplacian of a Cayley graph of the symmetric group S4 with generators

(1,2,3,4) and (1,2). Figure 5.13 shows the resulting wavelets computed by binary

parallel MMF.

Example 4: Barbell Graph. For this experiment we use a simple synthetic graph

called the barbell graph. A barbell graph Gn,k consists of two complete graphs, each

one on n vertices, connected by k ”bridges”. A bridge is an edge connecting a vertex

located in one the complete graphs to a vertex located in the other complete graph.

We consider the diffusion kernel A = e−αL, where L is the graph Laplacian of G8,1

and α = 0.01. We run second order parallel MMF (Algorithm 2) on A and plot all the

wavelets in Figure 5.14.

The behavior of the diffusion process on this graph is intuitive — the diffusion pro-

gresses more quickly within each of the two complete subgraphs and more slowly along

the bridge connecting them. Therefore, we expect to see multiple wavelets supported

on each of the two complete subgraphs of the barbell graph and a global wavelet that

can distinguish between the components. As Figure 5.14 shows, this is indeed the case

— there are various wavelets supported locally on each cluster, while the level ` = 0

wavelet manages to separate the two clusters.

Example 5: Hierarchical Graphs. One of the most intuitive ways to concep-

tualize MMFs is to consider the case when G is a graph with multiscale, hierar-

97

(1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)

(1,3,4) (3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)

(1,4,3)

(1,2)(3,4)

(2,3)(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)
(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3)

(1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)

(1,3,4) (3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)

(1,4,3)

(1,2)(3,4)

(2,3)(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)
(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3)

(1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)

(1,3,4) (3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)

(1,4,3)

(1,2)(3,4)

(2,3)(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)
(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3)

(1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)

(1,3,4) (3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)

(1,4,3)

(1,2)(3,4)

(2,3)(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)
(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3)

(1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)

(1,3,4) (3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)

(1,4,3)

(1,2)(3,4)

(2,3)(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)
(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3)

(1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)

(1,3,4) (3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)

(1,4,3)

(1,2)(3,4)

(2,3)(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)
(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3)

(1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)

(1,3,4) (3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)

(1,4,3)

(1,2)(3,4)

(2,3)(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)
(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3)

(1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3)

(1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3) (1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3) (1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3) (1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3)

(1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)

(1,3,4) (3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)

(1,4,3)

(1,2)(3,4)

(2,3)(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)
(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3)

(1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3) (1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3) (1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3)

(1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3) (1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3) (1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3) (1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3)

(1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3) (1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3) (1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3) (1,2,4)

(1,3,2)

(1,3,2,4)

(2,4)

(1,3)(2,4)
(1,3,4)

(3,4)

(1,2,3,4)

(1,4)

(1,3,4,2)
(1,4,3)

(1,2)(3,4)

(2,3)

(1,4)(2,3)

(1,4,2,3)

()

(1,3)

(2,3,4)

(1,4,3,2)

(1,4,2)

(1,2)

(1,2,4,3)

(1,2,3)

(2,4,3)

Figure 5.13: MMF on Cayley graph. Wavelets recovered by binary GreedyParal-
lelMMF on the graph Laplacian of the Cayley graph of the symmetric group S4.

98

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −3

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −3

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −3

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −3

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −3

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −3

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −3

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −3

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −2

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −2

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −2

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −2

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −1

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = −1

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

` = 0

0
1

23

4
5

6

7

8

9
10

11
12 13

14

15

n=8, width=0.01

scaling function

Figure 5.14: MMF on a barbell graph. All the wavelets (of different resolution `)
recovered by binary GreedyParallelMMF on the diffusion matrix of a barbell graph
C8,1.

99

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3
wavelet 92

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3
wavelet 54

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3
wavelet 106

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3
wavelet 26

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3
wavelet 86

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3
wavelet 119

Figure 5.15: MMF wavelets on a hierarchical graph. Wavelets of different resolution
recovered by binary parallel MMF on the multiscale graph in Example 4 in Section 5.6.7.
Points from the blue and the red Gaussians form one meta–cluster, while the other three
Gaussians form the other meta–cluster. The bars show the value of specific wavelets at
individual data points.

100

0

1
2

3

4
567

8

910 11
12

13
14

15
16

17

1819

20

21
22
23

24

25

26
27

2829

3031
32 33

34

35
36

37
38

39
40

41
42

43

4445

46
47

48

49

50

51 52

53
54

55

56

57

58

59

n=60, s=20, v=20, p_in=0.9, p_out=0.1, width=0.1

0

1
2

3

4
567

8

910 11
12

13
14

15
16

17

1819

20

21
22
23

24

25

26
27

2829

3031
32 33

34

35
36

37
38

39
40

41
42

43

4445

46
47

48

49

50

51 52

53
54

55

56

57

58

59

n=60, s=20, v=20, p_in=0.9, p_out=0.1, width=0.1

0

1
2

3

4
567

8

910 11
12

13
14

15
16

17

1819

20

21
22
23

24

25

26
27

2829

3031
32 33

34

35
36

37
38

39
40

41
42

43

4445

46
47

48

49

50

51 52

53
54

55

56

57

58

59

n=60, s=20, v=20, p_in=0.9, p_out=0.1, width=0.1

0

1
2

3

4
567

8

910 11
12

13
14

15
16

17

1819

20

21
22
23

24

25

26
27

2829

3031
32 33

34

35
36

37
38

39
40

41
42

43

4445

46
47

48

49

50

51 52

53
54

55

56

57

58

59

n=60, s=20, v=20, p_in=0.9, p_out=0.1, width=0.1

0

1
2

3

4
567

8

910 11
12

13
14

15
16

17

1819

20

21
22
23

24

25

26
27

2829

3031
32 33

34

35
36

37
38

39
40

41
42

43

4445

46
47

48

49

50

51 52

53
54

55

56

57

58

59

n=60, s=20, v=20, p_in=0.9, p_out=0.1, width=0.1

0

1
2

3

4
567

8

910 11
12

13
14

15
16

17

1819

20

21
22
23

24

25

26
27

2829

3031
32 33

34

35
36

37
38

39
40

41
42

43

4445

46
47

48

49

50

51 52

53
54

55

56

57

58

59

n=60, s=20, v=20, p_in=0.9, p_out=0.1, width=0.1

0

1
2

3

4
567

8

910 11
12

13
14

15
16

17

1819

20

21
22
23

24

25

26
27

2829

3031
32 33

34

35
36

37
38

39
40

41
42

43

4445

46
47

48

49

50

51 52

53
54

55

56

57

58

59

n=60, s=20, v=20, p_in=0.9, p_out=0.1, width=0.1

0

1
2

3

4
567

8

910 11
12

13
14

15
16

17

1819

20

21
22
23

24

25

26
27

2829

3031
32 33

34

35
36

37
38

39
40

41
42

43

4445

46
47

48

49

50

51 52

53
54

55

56

57

58

59

n=60, s=20, v=20, p_in=0.9, p_out=0.1, width=0.1

Figure 5.16: MMF wavelets on a random partition graph. Wavelets of different
resolution recovered by second order parallel MMF on the diffusion kernel of a Gaussian
random partition graph described in Example 4 in Section 5.6.7. The plots show the graph
connectivity with each node colored according to the wavelet value at that node.

101

chical structure and A is the diffusion matrix of G. In this case, the wavelets re-

turned by MMF provide a multiresolution basis for G: the highest frequency wavelets

are localized to individual clusters at the bottom of the hierarchy, lower frequency

wavelets are localized to clusters at the next level, and so on, until we finally get to

the scaling functions, which are fully global. To illustrate this point we construct

a multiscale dataset, which is similar to the one we used in Section 5.6.5. We con-

sider a dataset consisting of 250 points in R2 which is the union of 50 realization

of five Gaussian random variables, each on sampled from normal distribution with

means [1.4,0.6], [0.6,1.4], [2,2], [−2,−2], [−2.8,−2.8] and standard deviations all equal

to 0.25. From this date we construct the pairwise distance matrix A such that for

each pair of points xi, xj , Ai,j = e
−∣∣xi−xj ∣∣

2/0.52 . We run binary parallel MMF on A

and plots some of the resulting wavelets in Figure 5.15 — the bars show the value of

specific wavelets at individual data points. MMF captures detail at different scales —

for example, wavelets 92, 54 and 106 capture purely local structure; wavelets 26 and 86

separate the red and the green clusters, respectively; wavelet 119 separates the yellow

cluster from the purple one.

Another hierarchical graph model we test MMF on is a Gaussian random partition

graph (Brandes et al., 2003). Gaussian random partition graphs consist of several

partitions whose exact number is determined by several parameters. Each cluster is of

size drawn from a normal distribution with mean s and variance s/v for some parameter

v. The intra–cluster probability of connecting any pair of nodes within the same cluster

is pin, while the inter–cluster probability of connecting any pair of nodes belonging to

different clusters is pout. The parameters we use to construct the graph in Figure 5.16

are n = 64, s = 20, v = 20, pin = 0.9, pout = 0.1. We run binary parallel MMF on the

diffusion kernel of this graph (with α = 0.1) and plot some of the recovered wavelets in

Figure 5.16. While the first six wavelets in the plot are fairly well localized in different

areas in each of the three clusters. In contrast, the last two wavelets are more global

102

and they can separate the bottom right cluster from the the top on, on one hand, and

the bottom left cluster from the remaining two, on the on the other hand.

103

CHAPTER 6

MMF FOR MATRIX COMPRESSION

The massive size of modern datasets often requires matrices arising in learning problems to

be reduced in size. Distance matrices or Gram (kernel) matrices, in particular, are often

a computational bottleneck, because they are large and dense. If n is the number of data

points, the space complexity of these matrices is n2, while the time complexity of the linear

algebra operations involved in many learning algorithms, such as eigendecomposition, matrix

inversion, or solving least squares problems, usually scales with n3. Without efficient matrix

compression methods or, as they are sometimes called, matrix sketches, many popular

machine learning algorithms are simply inapplicable to today’s datasets, where n is often

on the order of millions. In numerical analysis, scientific computing and randomized linear

algebra matrix sketches are also used for approximations of high order tensors (Drineas and

Mahoney, 2007), for preconditioning of linear systems (Woodruff, 2014; Avron et al., 2010),

or for the approximation of matrix–matrix and matrix–vector products (Drineas et al., 2006;

Martinsson, 2008; Halko et al., 2011).

Classically, a symmetric matrix A ∈ Rn×n can be compressed by Principle Component

Analysis, however, more recently, as the size of modern datasets continues to grow, several

other approximation sketches have been developed. Mostly, they rely on randomization

and subsampling in order to improve on the computational complexity of PCA. Invariably,

what all of these approximation algorithms have in common is the underlying assumption

that the matrix being compressed has low rank, or at least that it can be well modeled by

a low rank surrogate. In this chapter we demonstrate that multiresolution structure is a

viable alternative to the low rank paradigm in machine learning, especially in the context of

graph/network data.

We begin with a review the various types of matrix sketches (Sections 6.1, 6.2 and 6.3),

discuss how MMF can be used for matrix compression (Section 6.4) and empirically compare

the different compression schemes on real data (Section 6.5). In this and the following

104

chapters we will sometimes use the terms ”matrix approximation”, ”matrix compression”

and ”matrix sketching” interchangeably.

6.1 Principle Component Analysis (PCA)

The most classical way of compressing a symmetric matrix A ∈ Rn×n is Principal Component

Analysis (PCA) (Eckart and Young, 1936; Jolliffe, 1986)

Ã = QΛQ⊺, (6.1)

where Q ∈ Rn×` is an orthogonal matrix whose columns contain the ` leading eigenvectors

and Λ ∈ R`×` contains the corresponding eigenvalues on its main diagonal. Ã is a projection

of A onto the subspace spanned by its ` highest eigenvalue eigenvectors Q∶,1,Q∶,2, . . . ,Q∶,`.

PCA is optimal in the sense that over all the subspaces of size ` it minimizes the approxi-

mation error ∣∣A − Ã∣∣ as measured in Frobenius, operator or nuclear norm. For that reason

approximating A by its top ` eigenvectors in the form (6.1) is sometimes called the best

rank ` approximation of A.

As a compression algorithm, PCA reduces the storage requirements of A from n2 to `+n`.

Additionally, decomposing matrices by PCA makes it much easier to perform certain linear

algebra operations. For example, rather than computing the exact matrix vector product Av

in time O(n2), the approximate matrix vector product Ãv can be computed in time O(n`)

(computing Q⊺v takes n` operations, rescaling it by the diag(Λ) takes ` operations, and

finally applying Q on its left side takes n` operations). Computing the approximate matrix

inverse Ã−1 amounts to just taking the reciprocal of the diagonal of Λ, which can be done in

only ` operations. The main drawback of performing PCA is its computational complexity

— unless A has special structure, such as a large degree of sparsity, computing the ` leading

eigenvectors for (6.1) itself costs O(n2`) operations, which for modern size datasets is often

prohibitive and usually negates whatever computational savings Ã might afford afterwards.

105

6.2 Projection Based Methods for Matrix Compression

Projection based methods approximate a symmetric matrix A ∈Rn×n in the form

Ã = CW †C⊺, (6.2)

with C = AS and W = S⊺AS, where S ∈ Rn×` is a random projection matrix with ` << n. Note

that the projection based sketches described here apply to both symmetric and nonsymmetric

matrices, however below we assume that A is symmetric, just like in the rest of this thesis.

Classically, as first introduced by Johnson and Lindenstrauss (1984), C is an orthogo-

nal projection onto a random `–dimensional space. Their famous Johnson–Lindenstrausss

Lemma states that a set of n points in a high dimensional Euclidean space can be embedded

via a random projection into an ` dimensional Euclidean space, where ` = O(logn) (indepen-

dent of the ambient dimension), such that all the pairwise distances between the points are

approximately preserved (Johnson and Lindenstrauss, 1984). The Johnson–Lindenstrauss

Lemma has since inspired many approximate, randomized linear mappings which are not

random projections in the traditional linear algebraic sense, but instead satisfy similar ap-

proximate metric preserving properties, hence their name. Halko et al. (2011) and Mahoney

(2011) provide detailed reviews of random projection sketches which we summarize below.

For example, C can be constructed by taking a Gaussian mixtures of the columns of

A, i.e., S consists of ` spherically symmetric random vectors the coordinates of which are

i.i.d. N (0,1) random variables. These methods use Johnson–Lindenstrauss type arguments

to show that the resulting low dimensional random sketch preserves most of the information

at least about the part of A spanned by its high eigenvalue eigenvectors (Halko et al., 2011).

As a result, they come with strong guarantees, but incur the cost of having to compute `

dense linear combinations of the columns of A. Even if A was sparse, this process destroys

the sparsity of the approximation.

Element-wise random projections (Achlioptas, 2003) are another possibility — here

106

the entries of S are random variables sampled independently from {−1,1} with probability

1/6 or 0 with probability 2/3. The advantage of this method is that up to 2/3 of the entries

of S can zeroed out out when computing C, which makes this algorithm particularly useful

for computing random projection sketches at scale.

Another group of random projection based sketches are the so-called structured ran-

dom projections. In their most general form, structured random projections set S =

√
n/`DTR, where D ∈ Rn×n is a diagonal matrix of Rademacher random variables (i.e., each

diagonal entry is drawn independently from {−1,1} with equal probability), T is a unitary

matrix, and R restricts the size of S to n × ` by some sampling procedure. Depending on

the choice of T , the approximation guarantees of (6.2) can vary. For example, T could be

the normalized Fourier transform, in which case S is the so-called subsampled randomized

Fourier transform (SRFT) which has the form

S =

√
n

`
DFR, (6.3)

where D ∈ Rn×n is a diagonal matrix of Rademacher random variables, F ∈ Rn×n is the dis-

crete Fourier transform applied to the columns of A, and R ∈ Rn×` is simply a selector matrix

uniformly sampling ` of the n columns of the Fourier transform (Halko et al., 2011). How-

ever, the SRFT matrix (6.3) is just one possibility — other structured random projections

use the discrete cosine transform (Avron et al., 2010) or subsample the Walsh–Hadamard

transform matrix (4.11) (in place of the Fourier transform matrix F). The latter algorithm

is known as the Fast Johnson–Lindenstrauss Transform (FJLT) (Ailon and Chazelle, 2009,

2010; Matoušek, 2008; Tropp, 2011). Additionally, the matrix R does not need to be a selec-

tor matrix — each Ri,j of its entries can be drawn from an appropriately chosen distribution

(Ailon and Chazelle, 2010; Matoušek, 2008).

The running time of random projection based sketches varies widely depending on the

type of random projection, the type of the matrix being factorized (dense or sparse) or the

107

way random projections are implemented. However, overall random projections tend to be

either expensive to compute or expensive to apply to a vector/matrix downstream. For

example, if C is constructed by taking a Gaussian mixtures of the columns of A, computing

the matrix–matrix product C = AS requires O(n2`). The n2 factor makes this type of

random projection prohibitively expensive for modern datasets (which are typically of size

n ≈ 105−106) and outweighs the computational advantage random projection sketches might

bring downstream. In the case of the SRFT, computing the vector–matrix product v⊺DF

for some v ∈ Rn takes O(n logn) time, or even just O(n log `) time if only ` of the coordinates

of the product need to be accessed. Thus, implementing the random projection itself (i.e.,

computing C) costs O(n2 log `). Given that multiplying Ã of the form (6.2) by a dense

vector takes 2n`+`2 operations, the computational overhead of computing random projection

sketches in the first place is nontrivial.

6.3 Nyström Methods for Matrix Compression

The Nyström method constructs a low rank approximation Ã of a positive semidefinite

matrix A ∈ Rn×n as a decomposition of the form

Ã = CW †C⊺, (6.4)

where C = AP and W = P⊺AP with P ∈ Rn×`. The matrix P is just a diagonal binary

matrix which acts as a selector for ` of the columns of A and so, in practice, C is constructed

simply by subsampling ` of the actual columns of A. The matrix W is formed in the same

fashion except that both its columns and rows are subsampled identically. A less formal, but

perhaps more clear way of describing the way C and W are constructed, is in terms of an

n–dimensional sampling probability vector p. Each element pi corresponds to the probability

of selecting the i–th column (and row) to include in C (and W , respectively). When the

matrix A is a kernel matrix, constructed by applying a pairwise similarity function over a

108

dataset of n points, the Nyström method has an intuitive explanation — selecting the `

actual columns/rows of A is equivalent to selecting ` data points such that Ã approximates

A sufficiently well. Since both C and W consist of actual columns of A, the Nyström method

offers interpretability — for example, if A is a kernel matrix of pairwise similarities between

n genes, the Nyström method simply chooses the most representative genes to approximate

A. This is in contrast to compression by PCA, in which the principle components cannot

be mapped to actual genes. The space requirement of storing the Nyström approximation is

`n + `2. Multiplying Ã by a dense vector takes 2n` + `2 operations, while inverting Ã takes

O(`3) time.

The key assumption of the Nyström method is that most of the information contained in

A can be captured by a small number ` << n of the actual columns of A — this is the so-called

low rank assumption of matrix approximations. Since ` << n, W ends up being a square

matrix of dimensions much smaller than n. Thus, the overhead of having to store W and

having to efficiently compute its inverse, as required in (6.4), is only minimal. The goal then

is to construct C by judiciously selecting a small, representative number of the columns/rows

of A and then show that Ã is a sufficiently good approximation of A by measuring the error

∣∣A − Ã∣∣ in terms of Frobenius, spectral or trace norm. Of course, the extent to which A

is approximated by the low rank matrix Ã depends on the choice of importance sampling

distribution p with respect to which the columns/rows of A are sampled. Recent years have

resulted in the development of many variations of the Nyström method. Uniform Nyström

— the earliest Nyström method, yet one of the easiest to compute in practice and surprisingly

well working for certain types of graphs — samples ` of the n columns/rows of A uniformly

at random with (Drineas and Mahoney, 2005) or without replacement (Williams and Seeger,

2001).

An alternative technique, introduced by Drineas and Mahoney (2005), uses an impor-

tance sampling probability distribution constructed from the `2 norm of each column of A.

In a subsequent series of papers by Mahoney and Drineas (2009); Mahoney (2011); Gittens

109

and Mahoney (2013) the importance sampling Nyström was adapted to use the so-called

statistical leverage scores as weights instead. Leverage scores were first introduced in (Ma-

honey and Drineas, 2009) as a sampling technique for the more general type of low rank

approximation, called CUR decomposition, which is the analogue of the Nyström decompo-

sition for nonsymmetric matrices. The leverage scores of a matrix A ∈ Rn×n with respect

to a rank parameter r << n are calculated from the SVD decomposition A = UΣV ∗ (recall

U = V if A is symmetric), where the columns of the unitary matrix U ∈ Rn×r contain the

top r singular vectors of A. The leverage score for the i–th row of A is then given by

µi = ∣∣Ui,∶∣∣
2
2, 0 ≤ i ≤ n − 1. (6.5)

Since ∑i µi = ∣∣U ∣∣2
Frob

= r, one can define a probability distribution over the rows of A by set-

ting pi = µi/r. Sampling from this distribution essentially guarantees that the columns/rows

of A which are most highly correlated with the span of the top r singular vectors are most

likely to be selected for the approximation (6.4). Since leverage scores are defined relative to

the best rank r approximation of A, the approximation error ∣∣A−Ã∣∣ of the leverage scores

Nyström is often evaluated relative to the best rank r approximation of A (6.1). In some

cases, for example, when A is a linear kernel or a dense RBF kernel with certain parame-

ters, the leverage scores are fairly uniform, and so sampling using the distribution defined

by the leverage scores is not much more informative than uniform sampling, for example

(see (Gittens and Mahoney, 2013)). In fact, in these cases the leverage score Nyström has

higher approximation error than the Uniform Nyström. In this situation uniform sampling

is a more appropriate method of compression since the leverage scores computation requires

first obtaining the singular vectors of a potentially dense matrix. Despite the availability of

efficient methods (such as the Lanczos iterative eigenvalue algorithm for finding the SVD

of a matrix, see (Golub and Van Loan, 2012) for details), in the interest of computational

efficiency leverage score also needs to be approximated in the case of large matrices (see

110

(Drineas et al., 2012; Gittens and Mahoney, 2013) for leverage scores approximation). Addi-

tionally, note that r is an additional parameter for this type of Nyström. To obtain certain

theoretical guarantees, one might need to set ` ≥ r, but in general the choice of r is somewhat

arbitrary, while in practice its effect on the uniformity of the distribution pi = µi/r could be

significant.

More recently, Zhang et al. (2008) and Zhang and Kwok (2010) have taken a differ-

ent approach with their k–means clustering based Nyström method. It is specifically

designed to approximate a kernel matrix A, reflecting the pairwise similarity between n

data points. Instead of probabilistically selecting columns/rows of the kernel matrix A, this

Nyström method clusters the data points using k–means clustering and then uses only the

rows/columns of A corresponding to the cluster centers to reconstruct A. This method

avoids explicitly constructing A, which offers huge computational savings for downstream

algorithms, such as kernel methods, where constructing and storing A in the first place could

be a bottleneck.

First proposed by Deshpande et al. (2006), and more recently modified by Kumar et al.

(2012) and Wang and Zhang (2013), the adaptive sampling Nyström method updates

the weighted sampling probabilities for each column in a series of rounds instead of using a

fixed distribution, with or without replacement. On the first round, a few columns/rows are

selected from some initial distribution p (e.g., uniform), the approximation Ã is performed

using those columns/rows and subsequently the probability distribution p is updated based

on the approximation error ∣∣A∶,i − Ã∶,i∣∣ incurred in each column of A. The second round

proceeds identically — a few more columns are selected from the updated distribution p,

the approximation is performed again using the columns that were selected in the first two

rounds, the probability distribution p is updated and so on until the desired ` number of

columns is reached.

An alternative approach, called ensemble Nyström (Kumar et al., 2009), samples the

columns of A not just once, but t times, producing t different approximations Ã1, Ã2, . . . , Ãt

111

dataset n kernel type
HEP: high energy physics-theory collaboration graph 9,877 normalized Laplacian
GR: general collaboration and quantum
cosmology collaboration graph 5,242 normalized Laplacian
Gnutella: peer-to-peer network from August 6, 2002 8,717 normalized Laplacian
Enron: subgraph of the Enron email graph 10,000 normalized Laplacian
Dexter: a bag of words dataset 2,000 linear (d=2×104)
Abalone: physical measurements of Abalones 4,177 RBF (d=8)
Wine Quality: wine physicochemical tests 4,898 RBF (d=12)

Table 6.1: Datasets. Summary of the datasets used for the matrix compression experiments
(Bache and Lichman, 2013; Leskovec and Krevl, 2014; Davis and Hu, 2011). For the normal-
ized Laplacian kernels, the size reflects the number of vertices in the dataset. When a linear
or a radial basis function (RBF) kernel is used to construct a symmetric kernel matrix, n is
the number of data points and d is the dimensionality of each data point.

by one of the aforementioned techniques, and then averages those t approximations by ap-

propriately chosen weights.

Extensive experiments on numerous real datasets comparing these and other Nyström

variations can be found in (Gittens and Mahoney, 2013; Zhang and Kwok, 2010; Wang and

Zhang, 2013) and the references they cite. For analysis of the nonsymmetric version of

Nyström, called CUR, see the work of Drineas et al. (2008); Mahoney and Drineas (2009);

Wang and Zhang (2013).

6.4 MMF for Matrix Compression

In contrast to the above matrix sketches, MMF approximates A in the form

Ã = U⊺1U
⊺
2 . . . U

⊺
LHUL . . . U2U1, (6.6)

which can be intuitively thought of compression down to the core HSact
L ,Sact

L
(ignoring the

remaining n− ∣Sact
L ∣ values on the diagonal of H, as those are trivial to store and process from

the perspective of downstream applications). This is similar to (6.4), which can be thought

of compression down to a small ` × ` dimensional matrix W †, since the matrix C does not

112

need to be stored in explicit form as its columns are actual columns of A.

However, MMFs operate in a slightly different regime than the low rank sketches described

above. Recall from our discussion on MMF and Figure 5.1 that compressing a matrix to

size δ × δ means something slightly different for MMF and the other matrix sketches — in

addition to the δ × δ core, MMF also preserves a sequence of n − δ wavelet frequencies. The

space requirement for the most compact type of MMF, a k–order parallel MMF, therefore

consists of δ2 + (n − δ) floats to store H and k2Ln floats to store the rotations U1, . . . , U`

(this is assuming that exactly one row/column is eliminated after each rotation U`). Note

that the rotations do not need to be stored explicitly in matrix form as they are very sparse

— storing a Givens rotation U` = Ui,j,θ requires storing just the two indices i, j and the

angle θ. Applying each rotation matrix U` to a vector (i.e., U`v) can be computed in

kn operations, while computing Hv takes δ2 + (n − δ) operations — thus, computing the

approximate matrix–vector product Ãv requires 2kLn + δ2 + (n − δ) operations, and so the

total cost is O(2kLn + n + δ2).

6.5 Experiments

In this chapter we compare how well the different matrix sketches described earlier in the

chapter can approximate synthetic and real symmetric matrices. We measure the error

EFrob = ∣∣A − Ã∣∣Frob, as defined earlier in (5.28). This form is exactly the way the other

matrix sketches we described in this chapter measure the approximation error, except Ã is

an approximation of the form (6.2) or (6.4).

Approximation Error on Structured vs. Unstructured Matrices. To verify that

MMF can successfully be used as a compression tool, like the other sketches described above,

we measure the approximation error of factoring two types of matrices — random and

structured matrices. The structured matrix is a Kronecker product graph K1,κ with K1 =

[1,0.1; 0.1,1] and κ = 10 (see (5.29) for definition). Recall that Kronecker product graphs

113

(a) random matrix (b) Kronecker matrix

Figure 6.1: MMF on random vs. structured matrices. Frobenius norm error EFrob
of compressing matrices with binary parallel MMF vs. the Uniform Nyström method as a
function of the dimension of the core HSL,SL that A is compressed down to.

Figure 6.2: Grassmann distance between subspaces. Grassmann distance (6.7) be-
tween MMF subspaces of different dimensionality. The figure compares structured (Kro-
necker) and random matrices.

have a fractal, cluster–of–clusters structure. The random matrix is of the same size (n = 1024)

and consists of i.i.d. normal random variables. The approximation error is measured by

(5.28) and normalized in the form EFrob/∣∣A∣∣Frob. Figure 6.1 shows that binary parallel

MMF performs suboptimally when the matrix lacks an underlying multiresolution structure.

However, on the well structured Kronecker matrix MMF systematically outperforms other

algorithms (in this case the uniform Nyström method).

Principal Angles between Subspaces. In addition to measuring the approximation

error on structured and unstructured matrices (which is essentially a statement about how

well the eigenvalues of Ã approximates the eigenvalues of A ∈ Rn×n), we also quantify how

114

well the resulting subspaces of the MMF basis align with the corresponding best rank r

subspaces of A (i.e., the one recovered by PCA). A standard way of measuring the deviation

between two equidimensional subspaces is in terms of so-called principal angles. Given two

r–dimensional subspaces T and P (represented as orthonormal basis matrices of size n × r),

there are r principal angles θ1, θ2, . . . , θr (where θi ∈ [0,2π]) between T and P . Each angle

θi ∈ {θ1, θ2, . . . , θr} is recursively defined as follows

cos(θi) = max
t∈⟨T∶,1,..., T∶,r⟩, p∈⟨P∶,1,..., P∶,r⟩

∣t⊺p∣ = ∣t⊺i pi∣,

subject to the constraints

∣∣t∣∣ = ∣∣p∣∣ = 1, t⊺tj = ⋅ ⋅ ⋅ = t
⊺tj = 0, p⊺pj = ⋅ ⋅ ⋅ = p

⊺pj = 0 for j = 1, . . . , r − 1.

The vectors t1, . . . , tr and p1, . . . , pr are called the principal vectors. The principal angles

can be computed easily using SVD decomposition (Björck and Golub, 1973) as follows

T⊺P = UΣV ⊺,

where Σ = diag(σ1, . . . , σr) (with σ1 ≥ σ2 ≥ ⋅ ⋅ ⋅ ≥ σr) are the singular values of T⊺P . The

principal angles between the subspaces T and P are given by cos θi = σi (1 ≤ i ≤ r), while

the principal vectors for T and P are respectively the columns of TU and PV . Among

the various possible distance metrics that can be used to quantify the distance, we use the

Grassmann distance

dGr(T,P) = (
r

∑
i=1

θ2
i)

1/2. (6.7)

Figure 6.2 shows how the Grassmannian distance between the scaling subspace computed

by binary parallel MMF (which is equivalent to compressing A down to some core size r

and taking the rows of UL . . . U2U1 indexed by the r elements in the active list Sact
L) and

the corresponding r–dimensional subspace computed by PCA changes as a function of r.

115

The figure compares two types of matrices — a structured Kronecker product matrix and a

random matrix as described in the previous experiment in this section. For the Kronecker

matrix, the Grassmann distance is lower for all subspace sizes r, which means that MMF

consistently finds a subspace that aligns with the top k principal components well if the

underlying matrix has hierarchical structure.

Compression of Real Data. We also evaluate the performance of MMF for matrix

compression on several real datasets which are widely used in the matrix sketching literature

and are listed in Table 6.1. We compare the randomized MMF (RandomizedMMF with k =

2) with algorithms from each of the two matrix sketching categories described earlier in this

chapter — uniform sampling of the columns without replacement, leverage score importance

sampling, Sampled Randomized Fourier Transform (SRFT) and Gaussian mixtures of the

columns, which are denoted respectively unif, leverage, srft and gaussian in Figure 6.3.

We set the parameters for these four algorithms and the kernel parameters for the datasets,

as described by Gittens and Mahoney (2013). The approximation error is normalized with

respect to the best rank r approximation of A (denoted by Ar) in order to be able to compare

with the leverage score Nyström method, which is parameterized by a rank parameter r

required for the computation of the leverage scores. So the error is now normalized in the

form EFrob/∣∣A−Ar∣∣Frob. The approximation error is plotted as a function of the size of the

core HSL,SL that A is compressed down to (in the case of MMF) or the dimensions of W † in

(6.2) and (6.4) (for the other two types of sketches). The results in Figure 6.3 suggest that,

despite similar wall clock times, by leveraging more nuanced structure in matrices arising

from data than just low rank, MMF outperforms standard compression techniques by a very

large margin.

116

GR HEP

Gnutella dexter

wine Enron (subgraph)

abalones, σ = 1.0. Abalones, σ = 0.15.

Figure 6.3: MMF approximation error. The Frobenius norm error EFrob of compressing
matrices with binary randomized MMF (Algorithm 3) vs. other sketching methods as a
function of the dimension of the core HSL,SL that A is compressed down to.

117

CHAPTER 7

PARALLEL MULTIRESOLUTION MATRIX FACTORIZATION

The pMMF algorithm and library we present below are original work first published in

(Teneva et al., 2016; Kondor et al., 2015a,b). In this chapter we will use the matrix notation

defined in Section 1.2, as well as the MMF notation and definitions we introduced in the

rest of Chapter 5.

7.1 Limitations of MMF Algorithms

The main obstacle to using MMF for large matrix sketching has been the cost of computing

the factorization in the first place. All the MMF algorithms introduced in Section 5.2

construct the sequence of transformations (5.3) in a greedy way, at each level choosing U` so

as to allow eliminating a certain number of rows/columns from the active set while incurring

the least possible contribution to the final error. Assuming the simplest case of each U` being

a Givens rotation Ui,j,θ, this involves: (a) finding the pair of indices (i, j) involved in the

Givens rotation U` = Ui,j,θ and (b) finding the rotation angle θ. While (b) is generally easy,

finding the optimal pair (i, j) in the case of binary rotations (or the optimal set of indices

(i1, . . . , ik) in the case of k–point rotations) is a combinatorial problem that scales poorly

with the matrix dimension n. Specifically, the limitations of MMF algorithms introduced in

the previous chapter lead to the following computational bottlenecks:

1. The optimization is based on inner products between columns, so it requires computing

the Gram matrix

G` = A
⊺
`−1A`−1, (7.1)

which has complexity of O(n3). Note that computing the Gram matrix needs to

be done only once: once we have G1 = A⊺A, each subsequent Gram matrix can be

computed via the recursion G`+1 = U`G`U
⊺
`

.

118

2. In the simplest MMF algorithm, GreedyJacobiMMF, described in Section 5.2.1, U`

is chosen to be a k-point rotation which allows removing a single row/column from the

active set with the least contribution to the final error. The complexity of finding the

indices involved in the Givens rotations is O(nk). Given that there are O(n) rotations

in total, in the k = 2 case the cost of finding all of them is O(n3).

3. The drawback of GreedyJacobiMMF is that sometimes it tends to lead to cascades,

as discussed at the end of Section 5.2.4. This motivated an alternative MMF algorithm,

GreeyParallelMMF, in which each U` is the direct sum of ∣S`∣/k separate nonover-

lapping k–point rotations. GreeyParallelMMF avoids cascades, but finding each

U` involves solving a nontrivial matching problem between the active rows/columns

of A`−1. In the case of k = 2, the matching can be done in O(n3) time by the so-

called Blossom Algorithm (Edmonds, 1965), however for, k > 2 it becomes forbiddingly

expensive, even for a small matrix size n.

7.2 Parallel MMF (pMMF)

The Parallel MMF (pMMF) algorithm, described in this chapter, gets around the limitations

of previous MMF algorithms by employing a two level factorization strategy. The high level

picture is that A is factored in the form

A ≈ U
⊺
1U

⊺
2 . . . U

⊺
PH UP . . . U2U1, (7.2)

where each Up, called the p–th stage of the factorization, is a compound rotation (Definition

6), which is block diagonal in the following generalized sense.

Definition 9. Let M ∈Rn×n, and B1 ⊍B2 ⊍ . . . ⊍Bm be a partition of [n]. We define the

(u, v) block of M (with respect to the partition (B1,B2, . . .Bm)) as the submatrix

[M]u,v ∶=MBu,Bv . (7.3)

119

We say that M is (B1,B2, . . .Bm)–block diagonal if [M]u,v = 0 unless u = v.

Each stage Up itself, in turn, factors in the form

Up = U`p . . . U`p−1+2U`p−1+1 (7.4)

into a product of (typically, many) elementary rotations obeying the constraints described

in detail in Section 5.1. Thus, expanding each stage, the overall form of (7.2) becomes

A ≈ U⊺1 . . . U
⊺
l1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U1
⊺

U⊺l1+1 . . . U
⊺
l2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U2
⊺

. U⊺lP
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

UP
⊺

H UlP . . .
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
UP

. . . Ul2 . . . Ul1+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U2

Ul1 . . . U1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U1

, (7.5)

which is identical to the original MMF formulation (5.10), except for the additional constraint

that the elementary rotations U1, . . . , UL are forced into contiguous runs U`p−1+1, . . . , U`p

conforming to the same block structure. The structure of a single pMMF stage can be

graphically represented as

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

↦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U
⊺

1

⋅

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

⋅

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
U1bar

,

where the block diagonal partitioning (which would sometimes be called clustering) that

Ū1 conforms to is shown in gray.

Algorithm 4 (PMMF) presents the top level pseudocode for the stage–by–stage pMMF

factorization. The FindRotInCluster algorithm called inside Algorithm 4 (line 9) corre-

sponds to finding the elementary rotations within each stage (7.4). Overall, pMMF relies on

two main strategies which allow for its scalability to large matrices:

(i) clustering/blocking: The blocking of each stage Ūp allows for parallelization of the

factorization,

120

Algorithm 4 PMMF(A): top level of the pMMF factorization

U

1: Input: a symmetric matrix A ∈ Rn×n
2: Set A0 ← A
3: for (p = 1 to P) {
4: cluster the active columns of Ap−1 to blocks (B

p
1 , . . . ,B

p
m)

5: reblock Ap−1 according to (B
p
1 , . . . ,B

p
m)

6: for (u = 1 to m) [Ūp]u,u ← FindRotInCluster(p, u)
7: for (u = 1 to m) {
8: for (v = 1 to m) {
9: set [Ap]u,v← [Ūp]u,u[Ap−1]u,v[Ūp]

⊺
v,v

10: }}}
11: H ← the core of AL plus its diagonal
12: Output: (H, Ū1, . . . , Ūp)

(ii) randomization: FindRotInCluste finds the best rotations within each stage in a

randomized fashion. The use of randomization makes it similar to some of the other

matrix sketching algorithms (see Chapter 6) in the sense that they also use random

sampling to perform certain computations approximately, as a replacement of exact

numerical methods.

Below we elaborate on these strategies and describe some other useful properties of pMMF.

7.2.1 Clustering

The key issue in pMMF is determining how to block each pMMF stage so that the block

diagonal constraints imposed by (7.2) will have as little impact on the quality of the factor-

ization as possible (measured in terms of the residual (5.28) or some other notion of error).

On one hand, it is integral to the idea of multiresolution analysis that at each stage the trans-

form must be local. In the case of MMF this manifests in the fact that a given row/column

of A will tend to only interact with other rows/columns that have high normalized inner

product with it. This suggests blocking A by clustering its rows/columns by normalized

121

Algorithm 5 FindRotInCluster(p,u): subroutine for finding the optimal rotations to
perform in each block in a randomized fashion. Here we assume k = 2 and a compression
ratio 0 < η ≤ 1, which is the number of rotations to perform in each cluster/channel in each
stage as a fraction of the size of the cluster.

1: Input: The matrix A = [Ap]∶,Bu ∈ Rn×c made up of the c columns of Ap−1 forming
cluster u in Ap

2: compute the Gram matrix G = A⊺A

3: set I = [c] (the active set)
4: for (s = 1 to ⌊ηc⌋){
5: select i ∈ I uniformly at random
6: find j = argmaxI/{i}∣⟨A∶,i,A∶,j⟩∣ /∣∣A∶,j ∣∣
7: find the Givens rotation gs = Ui,j,θ as described in Section 7.2.3

8: set A← gsAg
⊺
s

9: set G← gsGg
⊺
s

10: # eliminate coordinate i or j from the active set
11: if

XXXXXX
Ai,∶

XXXXXXoff-diag
<
XXXXXX
Aj,∶

XXXXXXoff-diag
{

12: set I ← I/ {i}}
13: else set I ← I/ {j}
14: }

15: Output: [Ūp]u,u = g⌊ηc⌋ . . . g2g1

inner product. For speed, pMMF employs a randomized iterative clustering strategy with

additional constraints on the cluster sizes to ensure that the resulting block structure is close

to balanced.

On the other hand, enforcing a single block structure (i.e., using the same partitioning,

as implied by Definition 9) on all the stages would introduce artificial boundaries between

the different parts of A and prevent the algorithm from discovering the true multiresolution

structure of the matrix. Therefore, pMMF reclusters the rows/columns of A` before each

stage and reblocks the matrix accordingly. The first and crucial step towards pMMF is to

cluster the rows/columns of A into m clusters and only consider rotations between k–sets of

rows/columns that belong to the same cluster. Letting Bu be the indices of the rows/columns

belonging to cluster u, clustering has three benefits

(i) Instead of having to compute the full Gram matrix G = A⊺A, it is sufficient to compute

the local Gram matrices {Gu = [Ap]∶,Bu
⊺
[Ap]∶,Bu}

m
u=1 (note that Gu corresponds to

122

block u of a given stage p). Assuming that the clustering is even, i.e., ∣Bu∣ = Θ(c)

for some typical cluster size c (and therefore, m = Θ(n/c)), this reduces the overall

complexity of computing the Gram matrices from O(n3) to O(mc2n) = O(cn2).

(ii) The complexity of the index search problem in the GreedyJacobiMMF algorithm

(the second bottleneck described in Section 7.1) is reduced from O(nk) to O(ck). In

typical MMFs δL = O(n) and the total number of rotations L scales linearly with n.

Therefore, the total complexity of searching for rotations in the unclustered case is

O(nk+1), whereas with clustering it is O(ckn).

(iii) The computation of the different Gram matrices, as well as the rotations of the different

clusters, are completely decoupled and therefore, on a machine with at least m cores,

they can be computed in parallel, reducing the computation time of the above to

O(cn2/m) = O(c2n) and O(ckn/m) = O(ck+1), respectively.

7.2.2 Blocked Matrices

Moreover, in a given cluster u of a given stage p the local Gram matrix Gu and the rotations

can be determined from the columns belonging to just that cluster. However, subsequently,

these rotations need to be applied to the entire matrix, from both the right and the left,

which cuts across clusters. To be able to perform this part of the algorithm in parallel as

well, we partition A not just column-wise, but also row-wise. The resulting data structure

is called a symmetrically blocked matrix (c.f., Buluç and Gilbert (2012)).

Definition 10. Given a matrix A ∈Rn×n and a partition B1 ⊍B2 ⊍ . . .⊍Bm of n, the (u, v)

block of A is the submatrix Au,v ∶= ABu,Bv . The symmetric blocked matrix form of A

consists of the m2 separate matrices {Au,v}mu,v=1.

In pMMF, the matrix A` is always maintained in blocked matrix form, where the

block structure is dictated by the clustering of the current stage. pMMF reclusters the

123

rows/columns of A` before each stage, and reblocks the matrix accordingly. For large ma-

trices, the individual blocks can be stored on separate cores or separate machines and all

operations, including computing the Gram matrices, are performed in a block–parallel fash-

ion. As a result of maintaining A in a symmetric blocked blocked matrix form, finding the

rotations (line 9 of Algorithm 4) as well as applying the rotations (lines 10−12 of Algorithm

4) can be naively parallelized. Assuming m2–fold parallelism, the time complexity of the

Gram matrix computation is further reduced from O(cn2) to O(c3). Similarly, assuming

m2–fold parallelism and a total of ηc rotations in stage p, the overall time needed to apply

all of these rotations to the entire matrix scales with O(ηkc2) (for dense matrices). The

corresponding complexities for sparse matrices are shown in Table 7.1.

The blocked matrix data structure is ideally suited to carrying out each Ūp stage of

pMMF on a parallel system because (except for summary statistics) no data needs to be

communicated between the different blocks. However, changing the block structure of the

matrix from one clustering to another can incur a large communication overhead. It is critical

that the reblocking process is done efficiently, maintaining parallelism, without ever having

to push the entire matrix through a single processor or a single machine. To retain m–fold

parallelism, the reblocking is carried out in two phases: first, each column of blocks in the

original matrix is reblocked row-wise in parallel, then each row of blocks in the resulting

matrix is reblocked column-wise in parallel. Figure 7.1 illustrates the reblocking process –

note that the columns belonging to each block are not necessarily contiguous (as the block

structure can be easily maintained by keeping an index list), however, the figure assumes,

for the sake of visual clarity, that an appropriate permutation is applied to the matrix to

reorder it into blocks of contiguous columns. One of the main reasons why we decided to

implement dense/sparse blocked matrix classes in the pMMF software library (described in

the following section) was that we were not aware of any existing matrix library with this

blocking functionality.

124

process col’s of
ÐÐÐÐÐÐÐÐÐ→
blocks (parallel)

reblock
ÐÐÐÐÐ→
row-wise

process rows of
ÐÐÐÐÐÐÐÐÐ→
blocks (parallel)

reblock
ÐÐÐÐ→
col-wise

final
ÐÐÐÐ→
blocks

Figure 7.1: pMMF reblocking schematic. Illustration of the two stage reblocking strat-
egy used by the pMMF algorithm. The reblocking process starts with a blocked matrix
with 5 × 5 blocks which are reblocked in another set of 5 × 5 blocks. For the sake of visual
clarity, here we assume that the blocks are contiguous, but this is generally not the case.
The reblocking process involves reorganizing the rows according to the new structure (top
panel), then reorganizing the columns of the resulting matrix (bottom panel). To perform
this efficiently, the first operation is done in parallel for each column of blocks (shown in
different colors) of the original matrix, and the second operation is done in parallel for each
row of blocks (shown in different colors) of the resulting matrix.

7.2.3 Randomized Greedy Search for Rotations

Even with blocking, assuming that the characteristic cluster size is c, the O(ck) complexity

of finding the indices involved in each rotation by the GreedyJacobiMMF strategy is a

bottleneck. To address this problem, pMMF uses randomization. First a single row/column

i1 is chosen from the active set (within a given cluster) uniformly at random, and then

k − 1 further rows/columns i2, . . . , ik are selected from the same cluster according to some

separable objective function φ(i2, . . . , ik) related to minimizing the contribution to the final

error. For simplicity, in pMMF we use

φ(i2, . . . , ik) =
k

∑
r=2

⟨[A`−1]∶,i1 , [A`−1]∶,ir⟩

∣∣[A`−1]∶,ir ∣∣
,

i.e., [A`−1]∶,i1 is rotated with the k−1 other columns that it has the highest normalized inner

product (in absolute value) with. Similarly to MMF, the actual rotation angle (or, in the

125

case of k–order rotations, the k×k nontrivial submatrix of U`) is determined by diagonalizing

[G`](i1...ik),(i1...ik) (7.1) at a cost of O(k3). In the case of k = 2, the rotations involved in

each pMMF stage are Givens rotations, just like in the MMF algorithms in Section 5.2

This aggressively randomized, greedy strategy reduces the complexity of finding each

rotation to O(c), and in our experience does almost as well as exhaustive search of rotations

(using matching in Algorithm 2). In fact, even for k = 2 the quality of the pMMF approxi-

mation is comparable to that of performing MMF with the exhaustive search of rotations.

The criterion for elimination is minimal off-diagonal norm, ∣∣A∶,i∣∣off-diag = (∣∣A∶,i∣∣
2 −A2

i,i)
1/2,

because 2∣∣A∶,i∣∣
2
off-diag

is the contribution of eliminating row/column i to the residual. As

a by–product, randomization also eliminates the cascade problem of the GreedyJaco-

biMMF algorithm, mentioned in Section 7.1. At the same time the randomization does not

significantly affect the quality of the matrix approximation and in practice pMMF achieves

comparable approximation error as the MMF algorithms from the previous chapter (for

empirical evaluation of pMMF see Section 7.4).

7.2.4 Sparsity and Matrix Free MMF Arithmetic

Similarly to the other MMFs, pMMF can be used for approximating (dense or sparse) ma-

trices, albeit significantly more efficiently than other MMF algorithms do. Naturally, the

U` elementary rotations are always stored in sparse form, in fact, for maximal efficiency, in

the pMMF library they are implemented as separate, specialized objects (rather than ex-

plicitly as dense matrices). However, when n exceeds several thousand, even just storing the

original matrix in memory becomes impossible unless it is sparse. Therefore, maintaining

sparsity during the different subtasks of the pMMF factorization process is critical. As the

factorization progresses, due to the rotations, the fill-in (i.e., fraction of nonzero entries) in

Ap will increase. Fortunately, at the same time, the active part of A` shrinks, and assuming

multiresolution structure, these two factors balance each other out. In practice, we observe

126

serial MMF pMMF operations pMMF time Nproc

dense sparse dense sparse dense sparse

Computing Gram matrices n3 γn3 Pcn2 γPcn2 Pc3 γPc3 m2

Finding Rotations n3 n3 cn cn c2 c m

Updating Gram matrices n3 γ2n3 c2n γ2c2n c3 γ2c3 m

Applying rotations kn2 γkn2 kn2 γkn2 kc2 γkc2 m2

Clustering pmn2 γpmn2 pcn γpcn m2

Reblocking pn2 γpn2 pcn γpcn m

Factorization total n3 n3 Pcn2 γPcn2 Pc3 γPc3 m2

Table 7.1: pMMF complexity. The rough order of complexity of different subtasks in
pMMF vs. the serial greedy MMF algorithm (Algorithm 1). Here n is the dimensionality
of the original matrix A, k is the order of the rotations, and γ is the fraction of nonzero
entries in A, when A is sparse. We neglect that during the course of the computation γ tends
to increase because concomitantly A` shrinks, and computation time is usually dominated
by the first few stages. We also assume that entries of sparse matrices can be accessed
in constant time. In pMMF, P is the number of stages, m is the number of clusters in
each stage, and c is the typical cluster size (thus, c = θ(n/m)). The ”pMMF time” columns
give the time complexity of the algorithm assuming an architecture that affords Nproc–fold
parallelism. It is assumed that k ≤P ≤ c≤n, but n= o(c2). Note that in the simplest case of
Givens rotations, k=2.

that for most large sparse datasets, given a sufficiently highly parallel system, the overall

complexity of pMMF scales close to linearly with the number of nonzeros in A, both in space

and in time.

Let us denote the complete factorization appearing on the right hand side of (7.5) by

Ã. Even if the original matrix A was sparse, in general, Ã will not be, therefore computing

it explicitly is unfeasible. However, many downstream applications, e.g., iterative methods,

almost never need Ã itself, but only need the result of applying Ã (or e.g., Ã−1) as an

operator to vectors.

Therefore, in order to compute Ãv for a given v, we use what in numerical analysis is

called the matrix–free approach — we never compute Ã explicitly, rather, v is stored in the

same blocked form as A, the rotations are applied individually, and as the different stages

are applied to v, the vector goes through an analogous reblocking process to that described

127

for A. Graphically, this process can be represented as

Ãv = Ū⊺1 Ū
⊺
2 Ū

⊺
3 . . . Ū

⊺
PH ŪP . . .

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ū3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ū2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ū1

®
v̄

,

where to multiply v by a given stage Ūp, if v is blocked the same way, [v]u needs to be

multiplied only by [Ūp]u,u. The complexity of matrix–free MMF–vector multiplication is

O(kPn). The blocking within each stage makes it possible to distribute the matrix-vector

computation over m different processors.

In addition to speeding up matrix–vector products, compressing matrices with pMMF

can yield huge savings for certain downstream computations such as matrix inversion. For

example, in ridge regression or Gaussian process inference computational efficiency becomes

important when computing K−1v, where K is typically a large, dense kernel matrix.

The approximate matrix inverse Ã−1 is trivial to compute as follows

Ã−1 ≈ U⊺1 . . . U
⊺
L−1U

⊺
LH

−1ULUL−1 . . . U1,

where inverting the core–diagonal matrix H involves inverting the entries on the diagonal

of H and inverting the core of H. Since the core of H is only δL–dimensional (δL << n),

H−1 can be computed in O(n+ δ3
L) time, which is negligible compared to the O(n3) cost of

inverting A exactly. Similarly, to compute the matrix exponential, pMMF can be used the

same way.

The theoretical complexity of the various pMMF subtasks are summarized in Table 7.1.

Of course, requiring m2–fold parallelism (see last column of Table 7.1) as m → ∞ is an

abstraction. Note, however, that for sparse matrices, even the total operation count scales

with γn2, which is just the number of nonzero elements in A.

128

n d nnz
Laplacian kernels (Leskovec and Krevl, 2014; Davis and Hu, 2011)

web-NotreDame: web graph of the University of Notre Dame 325,729 - 1,497,134
soc-Epinions1: who-trusts-whom network of Epinions.com 131,828 - 841,372
Gnutella31: peer-to-peer network from August 31, 2002 62,586 - 147,892
Enron: Enron email graph 36,692 - 367,662
as-caida: CAIDA AS Relationships Datasets 31,379 - 106,762
CondMat: ArXiv condensed matter collaboration graph 23,133 - 186,936
AstroPh: ArXiv astrophysics collaboration graph 18,772 - 396,160
HEPph: ArXiv high energy physics collaboration graph 12,008 - 237,010
HEPth: ArXiv high energy physics theory collaboration graph 9,877 - 51,971
Gnutella06: peer-to-peer network from August 6, 2002 8,717 - 31,525
GR: ArXiv General Relativity collaboration graph 5,242 - 28,980

Linear kernels (Bache and Lichman, 2013)

dexter: bag of words dataset 2,000 20 4×106

protein: feature matrix for S. cerevisiae proteins 6,621 357 ≈44×106

SNPs: cancer DNA microarray data 5,520 43 ≈30×106

gisette: handwritten digit images 6,000 5,000 36×106

RBF kernels(Bache and Lichman, 2013)

abalone: physical measurements of abalones (σ=0.15,1.0) 4,177 8 ≈17×106

wine Quality: wine physicochemical tests (σ=1.0,2.1) 4,898 12 ≈24×106

Table 7.2: pMMF datasets. Summary of the datasets used in the pMMF compression
experiments (Bache and Lichman, 2013; Leskovec and Krevl, 2014; Davis and Hu, 2011).
All datasets are symmetric matrices of size n×n; nnz denotes the number of nonzero entries
in each dataset. For the Laplacian kernels, n reflects the number of vertices in the dataset.
The linear and RBF kernel matrices are constructed from n data points in Rd. For RBF
kernels σ is the width of the kernel.

129

7.3 pMMF Implementation: The pMMF Software Library

We implemented pMMF in C++11 with the goal of building a general purpose library that

scales to large matrices. The pMMF C++ software library is distributed under the GNU

Public License v.3.0 (Kondor et al., 2015b). Critical to the implementation are the data

structures used to store blocked vectors and matrices, which must support: (i) sparsity,

(ii) block level parallelism, (iii) fast multiplication by Givens rotations and k–point rotations

from both the left and the right, (iv) fast computation of inner products between columns

(and of Gram matrices), (v) fast reblocking, (vi) fast matrix/vector multiplication. Since

we could not find any existing matrix library fulfilling all these requirements, we imple-

mented the blocked matrix data structure from scratch directly on top of the stl::vector,

stl::list and stl::hash map containers. The pMMF library is made up of: (a) the pMMF

base system, consisting of all the classes involved in the mechanics of computing MMF fac-

torization, and (b) various add–on modules, such as the MATLAB interface. The library’s

classes form the following hierarchy

MATLAB interface and add-ons

Core MMF classes

OO

Blocked matrix/vector classes

OO

Matrix/vector classes

OO

Filetype classes

OO

Utility classes

OO

C++ base system and STL library

OO

The main parameters of pMMF are the order of the rotations k, the number of stages P ,

the target number of clusters per stage m, and the compression ratio η, which is the number

of rotations to perform in a given cluster, as a fraction of the cluster size. In most of our

130

experiments, a single row/column is removed from the active set after each rotation. For

computational efficiency, we use a rough randomized clustering method, which selects m

“anchors columns” uniformly at random from the active set, and clusters the remaining

columns to the anchor column with which is has highest normalized inner product. This

amounts to greedily assigning the remaining columns in the active set to one of the m

clusters until we run out of active columns. The clustering method also has additional

parameters intended to ensure that the clustering is approximately even — this is important

for the parallelization of the algorithm because, if one of the clusters is significantly larger

than the other ones, the operations that block is involved in will result in a bottleneck. If the

size of any of the clusters falls below cmin, then its columns are redistributed amongst the

remaining clusters, whereas if the size of any of the clusters exceeds cmax, then its columns are

recursively reclustered using the same algorithm. The maximum recursion depth is another

parameter Dmax. There is also a bypass flag, which, when set, signifies that rows/columns

which could not be successfully clustered using the above method at a given stage will simply

bypass the stage, with no rotations applied to them. Setting these parameters on a given

system requires some experience, but overall our results appear stable w.r.t. the parameter

values (including P , m and η, most importantly), as long as they are in a reasonable range.

7.4 pMMF Experiments

To evaluate the performance of pMMF and contrast it to that of other matrix approxima-

tion algorithms, we used a variety of real datasets commonly used in the matrix sketching

literature. Table 7.2 provides a brief description and summary statistics of the data used in

the experiments in this section. Broadly, each dataset falls into one of three groups:

(i) undirected graph/network data (in the form of Laplacian kernels). Most of these

datasets are real social networks and as such exhibit a strong hierarchical organization

(Leskovec et al., 2009; Fortunato and Barthelemy, 2007). These matrices also have high

131

degree of sparsity and by definition are not low rank matrices. Some of the smallest

datasets in this group were previously used by Gittens and Mahoney (2013) to evaluate

the performance of low rank matrix sketches — for those datasets we followed their

protocol when setting the parameters of the low rank matrix sketches. In order to

evaluate the speed and approximation accuracy of pMMF we also selected other, much

larger, datasets from The University of Florida Sparse Matrix Collection by Davis and

Hu (2011) and the Stanford Large Network Dataset Collection (Leskovec and Krevl,

2014).

(ii) linear kernels. Given a set of points x1, x2, . . . , xn ∈ Rd, the Ai,j entry of the linear

kernel matrix A is given by Ai,j = ⟨xi, xj⟩. Linear kernel matrices are typically very low

rank (if d << n) and so, unsurprisingly, low rank approximation methods are expected

to perform well on such datasets.

(iii) radial basis function (RBF) kernels. Given a set of points x1, x2, . . . , xn ∈ Rd,

the Ai,j entry of the RBF kernel matrix A is given by Ai,j = e
−∣∣xi−xj ∣∣

2
2/σ

2
. For the

two RBF kernel datasets the width parameter σ is set as described by Gittens and

Mahoney (2013). Note that depending on the width of the RBF kernel, the resulting

matrix can have a vastly different structure. Letting σ → 0 makes the spectrum of A

decay very slowly and as a result the A is not well approximated by low rank sketches.

Conversely, letting σ →∞ makes the spectrum of A decay faster (i.e., A is low rank),

which results in A being well approximated by low rank sketches.

Note that both the linear and RBF kernels are dense matrices, with all of their entries being

nonzero (the third column of Table 7.2 shows the absolute number of nonzero entries in each

dataset). When comparing the approximation performance on these two groups of matrices,

we set the parameters of the other matrix sketches as specified by Gittens and Mahoney

(2013).

132

HEPph (n=12,008) AstroPh (n =18,772) CondMat (n =23,133)

gnutella06 (n =8,717)
GR (n =5,242)

HEPth (n =9,877)

dexter (n =2,000) wine, σ = 1.0 (n =4,898) wine, σ = 2.1 (n =4,898)

abalone, σ = 0.15 (n =4,177) abalone, σ = 1.0 (n =4,177) protein (n =6,621)

SNPs (n =5,520)

Figure 7.2: pMMF Frobenius norm error. The nor-
malized Frobenius norm error of compressing matrices
with pMMF vs. other sketching methods as a function
of the dimension of the core HSL,SL that A is com-
pressed down to.

133

HEPph (n=12,008) AstroPh (n =18,772) CondMat (n =23,133)

gnutella06 (n =8,717) GR (n =5,242) HEPth (n =9,877)

dexter (n =2,000) wine, σ = 1.0 (n =4,898) Wine, σ = 2.1 (n =4,898)

abalone, σ = 0.15 (n =4,177) abalone, σ = 1.0 (n =4,177) protein (n =6,621)

SNPs (n =5,520)

Figure 7.3: pMMF spectral norm error. The nor-
malized spectral norm error of compressing matrices
with pMMF vs. other sketching methods, as a func-
tion of the the dimension of the core HSL,SL that A is
compressed down to.

134

7.4.1 pMMF Matrix Approximation Quality

To test how well pMMF can approximate a generic data matrix in comparison to other matrix

sketching methods, we measure the Frobenius norm error EFrob = ∣∣A− Ã∣∣Frob/∣∣A−Ar∣∣Frob,

as we did earlier in Section 5.6, and the spectral norm error ESpectral = ∣∣A − Ã∣∣2/∣∣A −Ar∣∣2

on various real data matrices. As before, Ar is the best rank r approximation of A obtained

by approximating A with its top r singular vectors/values. Some of these experiments are

similar to the ones performed in Section 6.4, except due to the scalability of pMMF are able

to test its performance on much larger datasets as well.

Figures 7.2 and 7.3 compare the performance of pMMF to some of the most common

matrix sketching algorithms: Nyström with uniform sampling (Williams and Seeger, 2001;

Fowlkes et al., 2004), leverage score sampling (Mahoney and Drineas, 2009; Mahoney, 2011;

Gittens and Mahoney, 2013), dense Gaussian projections (Halko et al., 2011), and structured

randomness with Fourier transforms (Tropp, 2011). In Figures 7.2 and 7.3 these methods

are denoted respectively unif, leverage, gaussian and srft and a detailed description

of these and related methods can be found in Chapter 6. Recall that all of these sketches

approximate A in the form Ã = CW †C⊺, where C is a judiciously chosen Rn×` matrix with

` << n, and W † is the pseudo–inverse of a certain matrix that is of size only ` × `. This

approximation is effectively a compression of A down to ` rows/columns incurring errors

∣∣A − Ã∣∣Frob and ∣∣A − Ã∣∣2. For the Nyström compression with leverage score sampling we

followed the experiments in Gittens and Mahoney (2013) and used the following target ranks:

r = 5 for SNPs, r = 8 for dexter, r = 10 for protein, r = 20 for Gnutella06, abalone and wine,

r = 100 for the rest of the datasets (recall r is the number of top eigenvectors used for

computing the leverage scores, see (6.5) in Section 6.3).

On most datasets that we tried, in all of the three groups, pMMF significantly outper-

forms the other sketching methods in both Frobenius norm error (Figure 7.2) and spectral

norm error (Figure 7.3). The advantage of pMMF seems to be particularly great on real

graph/network graphs, perhaps not surprisingly, since it has long been conjectured that

135

networks have multiresolution, clusters–of–clusters structure (Ravasz and Barabási, 2003;

Coifman and Maggioni, 2006; Savas et al., 2011). However, we find that pMMF often out-

performs other methods on kernel matrices in general. On the other hand, on a small fraction

of datasets, typically those which explicitly have low rank or are very close to being low rank,

pMMF is outperformed by the other low rank matrix sketching algorithms. For example, in

Figure 7.3 and 7.2 pMMF performs subpar in terms of Frobenius and spectral norm error on

the Abalone, protein and SNPs datasets. This is likely due to the fact that these datasets are

very low dimensional (as Table 7.2 shows, d, the number of features in the input space before

kernelization, is significantly smaller than n which leads to linear kernel matrices of very low

rank). Due to the low rank and the lack of any multiresolution structure, the blocking and

randomization subtasks of the pMMF algorithm are not able to capture the low rank struc-

ture well enough. The problem is partially alleviated by a combination of a conservative

elimination strategy and increasing the ratio of rotations η within each cluster, which leads

to smaller Frobenius and spectral norm errors for these datasets. However, this essentially

amounts to attempting to diagonalize A, which is identical to approximating A using its

top singular vectors/values. In addition, increasing the ratio of the rotations applied, while

restricting elimination, increases in the wall clock time of the pMMF decomposition. There-

fore, in cases where the underlying matrix rank is low, a combination of the low rank and

multiresolution approaches might be most advantageous.

On RBF kernels pMMF has different performance depending on the width σ of the RBF

kernel. For example, smaller values of σ in the RBF kernel for both the wine and abalone

datasets (i.e. σ = 1.0,0.15, respectively), lead to better performance of pMMF in comparison

to the low rank sketches both in terms of Frobenius and spectral norm error (albeit the latter

is somewhat less noticeable). As mentioned at the beginning of Section 7.4, low σ results in

a slow decay in the spectrum of A and therefore low rank approximations cannot capture the

matrix structure well — naturally, this is a favorable scenario for MMF sketching instead.

Additionally, we also tested pMMF approximation on larger datasets for which low rank

136

dataset core size time (secs) EFrob ESpectral
web-NotreDame 1731 726.5 0.6 0.7
Enron 4431 530.2 0.6 0.3
Gnutella31 4207 112.2 0.8 0.6
as-caida 3404 91.9 0.7 0.6
soc-Epinions1 2089 1304.4 0.5 0.5

Table 7.3: pMMF compression on large datasets. The normalized Frobenius and
spectral norm error, time (in seconds), and the dimension of the core HSL,SL that A is
compressed down to.

sketches are prohibitively expensive to compute (Table 7.3). Note that in Table 7.3, since

we do not compare to low rank methods, the errors are normalized in the form EFrob =

∣∣A − Ã∣∣Frob/∣∣A∣∣Frob and ESpectral = ∣∣A − Ã∣∣2/∣∣A∣∣2.

7.4.2 pMMF Scalability

In addition to its approximation accuracy, pMMF has another major advantages — its

scalability. pMMF is also dramatically faster than the other methods. This is only par-

tially explained by the fact that several of the competing algorithms were implemented in

MATLAB, which limits the size of datasets on which they can be feasibly ran on. For ex-

ample, Nyström with leverage score sampling (leverage) requires estimating the singular

vectors of A, which, unless A is very low rank, is a computational bottleneck. Several of

the Nyström experiments took more than half an hour to run on 8 cores, whereas our cus-

tom C++ pMMF implementation compressed the matrix in at most one or two minutes,

even the dense datasets which have on the order of n = 40 × 106 (i.e. protein, gisette, and

SNPs datasets in Figure 7.5). The compression results shown in Table 7.3 could not even be

compared to other methods because they could not scale to matrices of this size.

The plots in Figure 7.4 confirm that on many real world datasets, particularly, matrices

coming from sparse network graphs, the wall clock time of pMMF scales close to linearly

137

Figure 7.4: pMMF time vs. sparsity. Execution time of pMMF as a function of the
number of nonzero entries in the input matrix A. For each of the graph Laplacians of
size n, listed in Table 7.2, we take submatrices of varying sizes and compress each of them
with pMMF to a SL–core–diagonal matrix with core size of around 100. The x and y axes,
respectively, reflect the number of nonzero entries in each of the submatrices and the running
time of the MMF compression. Each datapoint is averaged over five runs.

with the dimension n. Also note that while in these experiments n is on the order of 105,

the factorization time (on a 16–core cluster) is on the order of seconds.

138

Figure 7.5: pMMF execution time. Execution time of pMMF as a function of the size
of the compressed submatrix HSL,SL on the datasets listed in Table 7.2.

139

CHAPTER 8

CONCLUSION AND CONTRIBUTION SUMMARY

In this thesis we introduced the Multiresolution Matrix Factorization framework and showed

how MMFs can be used for compressing matrices. Some of the main results and contributions

of this thesis are

• generalizing multiresolution analysis into a matrix factorization problem;

• introducing three algorithms for computing the MMF of symmetric matrices of small

to medium size (Chapter 5);

• introducing multiresolution factorizability as an alternative to the low rank assumption

in machine learning and numerical analysis (Section 5.3);

• demonstrating that in many cases MMF outperforms current state–of–the–art matrix

sketches by a nontrivial margin (Chapter 6);

• introducing a fast, parallel MMF algorithm (pMMF), which scales almost linearly with

the number of nonzeros in the matrix being factorized (Chapter 7);

• demonstrating that pMMF is a viable tool for compressing matrices and data at scale.

Naturally, many questions remain unanswered, some of which pertain to the MMF frame-

work itself, while others relate to the challenges associated with generalizing multiresolution

analysis to the discrete setting. Possible directions for further research include

• investigating the effect that the underlying graph/matrix structure has on the quality

of the MMF approximations and investigating how the clustering technique in pMMF

affects the algorithm’s performance

• exploring the range of matrix conditions under which MMF is more advantageous than

a low rank approximation;

140

• exploring the range of matrix conditions under which MMFs are more advantageous

than low rank approximations;

• further studying the theoretical guarantees of multiresolution factorizability;

• investigating the applicability of MMF for downstream learning algorithms (e.g., can

MMF speed up classification without affecting accuracy too much?);

• generalizing uncertainty principles (such as Heisenberg’s uncertainty principle, see Sec-

tion 2.7) to the matrix factorization setting and, more generally, formalizing the mean-

ing of a ”good” multiresolution/multiscale basis.

141

REFERENCES

Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with
binary coins. Journal of Computer and System Sciences, 66(4):671–687, June 2003. ISSN
00220000.

Michal Aharon, Michael Elad, and Alfred Bruckstein. K-SVD: An algorithm for designing
overcomplete dictionaries for sparse representation. Signal Processing, IEEE Transactions
on, 54(11):4311–4322, 2006.

Nir Ailon and Bernard Chazelle. The fast Johnson–Lindenstrauss transform and approximate
nearest neighbors. SIAM Journal on Computing, 39(1):302–322, January 2009. ISSN 0097-
5397. doi: 10.1137/060673096.

Nir Ailon and Bernard Chazelle. Faster dimension reduction. Communications of the ACM,
53(2):97–104, 2010.

William K Allard, Guangliang Chen, and Mauro Maggioni. Multi-scale geometric methods
for data sets II: geometric multi-resolution analysis. Applied and Computational Harmonic
Analysis, 32(3):435–462, 2012.

Sivaram Ambikasaran. Fast algorithms for dense numerical linear algebra and applications.
PhD thesis, Stanford University, 2013.

Sivaram Ambikasaran and Eric Darve. The inverse fast multipole method. arXiv preprint
arXiv:1407.1572, 2014.

Sivaram Ambikasaran and Michael O’Neil. Fast symmetric factorization of hierarchical ma-
trices with applications. arXiv preprint arXiv:1405.0223, 2014.

Haim Avron, Petar Maymounkov, and Sivan Toledo. Blendenpik: supercharing LAPACK’s
least-squares solver. SIAM Journal on Scientific Computing, 32, 2010.

K. Bache and M. Lichman. UCI machine learning repository, 2013. URL http://archive.

ics.uci.edu/ml.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

Rick Beatson and Leslie Greengard. A short course on fast multipole methods. Wavelets,
multilevel methods and elliptic PDEs, 1:1–37, 1997.

Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for Laplacian-based
manifold methods. Journal of Computer and System Sciences, 74(8):1289–1308, 2008.

Ake Björck and Gene H Golub. Numerical methods for computing angles between linear
subspaces. Mathematics of computation, 27(123):579–594, 1973.

Steffen Börm and Jochen Garcke. Approximating Gaussian processes with H2 matrices. In
Machine Learning: ECML 2007, pages 42–53. Springer, 2007.

142

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Steffen Börm, Lars Grasedyck, and Wolfgang Hackbusch. Hierarchical matrices. Lecture
notes, 21:2003, 2003.

Wolfgang Hackbusch; Steffen Börm. Data-sparse approximations by adaptive H2 Matrices.
Linear Algebra and its Applications, 422(2-3):380–403, 2007.

Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Experiments on graph clustering
algorithms. In European Symposium on Algorithms, pages 568–579. Springer, 2003.

Achi Brandt. Multi-level adaptive technique (MLAT) for fast numerical solution to bound-
ary value problems. In Proceedings of the Third International Conference on Numerical
Methods in Fluid Mechanics, volume 18 of Lecture Notes in Physics, pages 82–89. Springer
Berlin Heidelberg, 1973. ISBN 978-3-540-06170-0. doi: 10.1007/BFb0118663.

William L Briggs, Steve F McCormick, et al. A multigrid tutorial. SIAM, 2000.

Aydin Buluç and John R Gilbert. Parallel sparse matrix-matrix multiplication and indexing:
implementation and experiments. SIAM J Sci Comput, 34(4), 2012.

E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Infor-
mation Theory, 51(12):4203–4215, Dec 2005.

S. Chandrasekaran, M. Gu, and W. Lyons. A fast adaptive solver for hierarchically semisep-
arable representations. Calcolo, 42(3-4):171–185, 2005.

Guangliang Chen and Mauro Maggioni. Multiscale geometric and spectral analysis of plane
arrangements. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Con-
ference on, pages 2825–2832. IEEE, 2011.

Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition by
basis pursuit. SIAM journal on scientific computing, 20(1):33–61, 1998.

Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. Scalable parallel
factorizations of SDD matrices and efficient sampling for Gaussian graphical models. arXiv
preprint arXiv:1410.5392, 2014.

F. R. K. Chung. Spectral Graph Theory. Number 92 in the Regional Conference Series in
Mathematics. AMS, 1997.

Ronald R Coifman and Mauro Maggioni. Multiresolution analysis associated to diffu-
sion semigroups: Construction and fast algorithms. Technical report, Technical report
YALE/DCS/TR-1289, Yale University, 2004.

Ronald R. Coifman and Mauro Maggioni. Diffusion wavelets. Applied and Computational
Harmonic Analysis, 21(1):53–94, July 2006. ISSN 10635203. doi: 10.1016/j.acha.2006.04.
004. URL http://linkinghub.elsevier.com/retrieve/pii/S106352030600056X.

143

http://linkinghub.elsevier.com/retrieve/pii/S106352030600056X

Andrew Crossett, Ann B. Lee, Lambertus Klei, Bernie Devlin, and Kathryn Roeder. Refin-
ing genetically inferred relationships using treelet covariance smoothing. The Annals of
Applied Statistics, 7(2):669–690, June 2013. ISSN 1932-6157. doi: 10.1214/12-AOAS598.
URL http://projecteuclid.org/euclid.aoas/1372338463.

Ingrid Daubechies. Orthonormal bases of compactly supported wavelets. Communications
on Pure and Applied Mathematics, 41(7):909–996, 1988. ISSN 00103640. doi: 10.1002/
cpa.3160410705.

Ingrid Daubechies. Ten lectures on wavelets. SIAM, 1992.

Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25, December 2011. ISSN 0098-3500. doi: 10.1145/
2049662.2049663. URL http://doi.acm.org/10.1145/2049662.2049663.

D. Deng and Y. Han. Harmonic Analysis on Spaces of Homogeneous Type. Springer, 2009.

Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix approxi-
mation and projective clustering via volume sampling. In Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, pages 1117–1126. ACM, 2006.

P. Drineas and M. W. Mahoney. On the Nyström method for approximating a Gram matrix
for improved kernel-based learning. Journal of Machine Learning Research, 6:2153–2175,
2005.

Petros Drineas and Michael W Mahoney. A randomized algorithm for a tensor-based gener-
alization of the singular value decomposition. Linear algebra and its applications, 420(2):
553–571, 2007.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast Monte Carlo algorithms for
matrices I-III. SIAM Journal on computing, 36(1):158–183, 2006.

Petros Drineas, Michael W. Mahoney, and S Muthukrishnan. Relative-error CUR matrix
decompositions. SIAM Journal on Matrix Analysis and Applicatons, 30(2):844–881, 2008.

Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruff. Fast ap-
proximation of matrix coherence and statistical leverage. The Journal of Machine Learning
Research, 13(1):3475–3506, 2012.

Carl Eckart and Gale Young. The approximation of one matrix by another of low rank.
Psychometrika, I(3):211–218, 1936.

J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.

Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.

Santo Fortunato and Marc Barthelemy. Resolution limit in community detection. Proceedings
of the National Academy of Sciences, 104(1):36–41, 2007.

144

http://projecteuclid.org/euclid.aoas/1372338463
http://doi.acm.org/10.1145/2049662.2049663

Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral grouping using
the Nyström method. IEEE transactions on pattern analysis and machine intelligence, 26
(2):214–25, February 2004. ISSN 0162-8828. doi: 10.1109/TPAMI.2004.1262185.

Dennis Gabor. Theory of communication. Journal of the Institution of Electrical Engineers-
Part III: Radio and Communication Engineering, 93(26):429–441, 1946.

Matan Gavish, Boaz Nadler, and Ronald R Coifman. Multiscale wavelets on trees, graphs
and high dimensional data: Theory and applications to semi supervised learning. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages
367–374, 2010.

Pieter Ghysels, Xiaoye S Li, François-Henry Rouet, Samuel Williams, and Artem Napov.
An efficient multicore implementation of a novel HSS-structured multifrontal solver using
randomized sampling. SIAM Journal on Scientific Computing, 38(5):S358–S384, 2016.

Domingo Giménez, R Van de Geijn, Vicente Hernández, and Antonio M Vidal. Exploiting
the symmetry on the Jacobi method on a mesh of processors. In Parallel and Distributed
Processing, 1996. PDP’96. Proceedings of the Fourth Euromicro Workshop on, pages 377–
384. IEEE, 1996.

Alex Gittens and Michael W Mahoney. Revisiting the Nyström method for improved large-
scale machine learning. J. Mach. Learn. Res, 28(3):567–575, 2013.

Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.

L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of Compu-
tational Physics, 73:325–348, 1987.

Alfred Haar. Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, 69
(July):1–37, 1909.

W Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to
H-matrices. Computing, 62:89–108, 1999.

W. Hackbusch. Multi-Grid Methods and Applications. Springer Series in Computational
Mathematics. Springer Berlin Heidelberg, 2003. ISBN 9783540127611.

W. Hackbusch and B. N. Khoromskij. A sparse H-matrix arithmetic. Part II: Application
to multi-dimensional problems. Computing, 64(1):21–47, January 2000. ISSN 0010-485X.
URL http://dl.acm.org/citation.cfm?id=333825.333827.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM
review, 53(2):217–288, 2011.

David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via
spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150,
2011.

145

http://dl.acm.org/citation.cfm?id=333825.333827

Eldon R Hansen. On cyclic Jacobi methods. Journal of the Society for Industrial and Applied
Mathematics, 11(2):448–459, 1963.

W. Hardle, G. Kerkyacharian, D. Picard, and A. B. Tsybakov. Wavelets, Approximation
and Statistical Applications. Lecture notes in statistics; 129. Springer, New York, 1998.
ISBN 0387984534.

Matthias Hein, Jean-Yves Audibert, and Ulrike Von Luxburg. From graphs to manifolds–
weak and strong pointwise consistency of graph Laplacians. In Learning theory, pages
470–485. Springer, 2005.

C. J. G. Jacobi. Über ein leichtes verfahren, die in der theorie der säkularstörungen vork-
ommenden gleichungen numerisch aufzulösen. Journal für Reine und Angewandte Math-
ematik, 30:51–95, 1846.

R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis.
In International Conference on Artificial Intelligence and Statistics (AISTATS), 2010.

Rodolphe Jenatton, Jean-Yves Audibert, and Francis Bach. Structured variable selection
with sparsity-inducing norms. The Journal of Machine Learning Research, 12:2777–2824,
2011.

William B Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

R. Kondor, N. Teneva, and V. Garg. Multiresolution Matrix Factorization. International
Conference on Machine Learning (ICML), 2014.

Risi Kondor, Nedelina Teneva, and Pramod K Mudrakarta. Parallel MMF: a multiresolution
approach to matrix computation. arXiv preprint arXiv:1507.04396, 2015a.

Risi Kondor, Nedelina Teneva, and Pramod K. Mudrakarta. pMMF: a high performance
parallel MMF library. Hosted at https://github.com/risi-kondor/pMMF, 2015b.

Ioannis Koutis, Gary L. Miller, and David Tolliver. Combinatorial preconditioners and
multilevel solvers for problems in computer vision and image processing. Computer Vision
and Image Understanding, 115:1638–1646, 2011. ISSN 10773142. doi: 10.1016/j.cviu.2011.
05.013.

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Ensemble Nyström method. In
Advances in Neural Information Processing Systems, pages 1060–1068, 2009.

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sampling methods for the Nyström
method. Journal of Machine Learning Research, 13:981–1006, 2012.

Luc Le Magoarou, Rémi Gribonval, and Nicolas Tremblay. Approximate fast graph Fourier
transforms via multi-layer sparse approximations. IEEE Transactions on Signal and In-
formation Processing over Networks, 2017.

146

https://github.com/risi-kondor/pMMF

Ann B Lee, Boaz Nadler, and Larry Wasserman. Treelets: an adaptive multi-scale basis for
sparse unordered data. The Annals of Applied Statistics, pages 435–471, 2008.

Ann B. Lee Lee. Treelet code in MATLAB R2007a. Hosted at http://www.stat.cmu.edu/

~annlee/software.htm, 2006.

J. Leskovec, K. J. Lang, and M. W. Mahoney. Community structure in large networks:
natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics,
6(1), 2009.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in social media.
Proceedings of the 28th international conference on Human factors in computing systems
- CHI ’10, page 1361, 2010. doi: 10.1145/1753326.1753532. URL http://portal.acm.

org/citation.cfm?doid=1753326.1753532.

K Lessel, M Hartman, and Shivkumar Chandrasekaran. A fast memory efficient construc-
tion algorithm for hierarchically semi-separable representations. SIAM Journal on Matrix
Analysis and Applications, 37(1):338–353, 2016.

Michael Lewicki and Terrence Sejnowski. Learning overcomplete representations. Neural
computation, 12(2):337–365, 2000.

Oren E Livne and Achi Brandt. Lean algebraic multigrid (LAMG): Fast graph Laplacian
linear solver. SIAM Journal on Scientific Computing, 34(4):B499–B522, 2012.

Mauro Maggioni. Biorthogonal diffusion wavelets for multiscale representations on manifolds
and graphs. In Proceedings of SPIE, volume 5914, pages 59141M–59141M–13. Spie, 2005.
doi: 10.1117/12.616909. URL http://link.aip.org/link/?PSI/5914/59141M/1&Agg=

doi.

Luc Le Magoarou and Rémi Gribonval. Learning computationally efficient dictionaries and
their implementation as fast transforms. arXiv preprint arXiv:1406.5388, 2014.

Sridhar Mahadevan and Mauro Maggioni. Value function approximation with diffusion
wavelets and Laplacian eigenfunctions. Advances in neural information processing sys-
tems, 18:843, 2006.

M. W. Mahoney. Randomized algorithms for matrices and data. Foundations and Trends in
Machine Learning, 3, 2011.

Michael W Mahoney and Petros Drineas. CUR matrix decompositions for improved data
analysis. Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.

Julien Mairal, Guillermo Sapiro, and Michael Elad. Learning multiscale sparse representa-
tions for image and video restoration. Multiscale Modeling & Simulation, 7(1):214–241,
2008.

147

http://www.stat.cmu.edu/~annlee/software.htm
http://www.stat.cmu.edu/~annlee/software.htm
http://snap.stanford.edu/data
http://portal.acm.org/citation.cfm?doid=1753326.1753532
http://portal.acm.org/citation.cfm?doid=1753326.1753532
http://link.aip.org/link/?PSI/5914/59141M/1&Agg=doi
http://link.aip.org/link/?PSI/5914/59141M/1&Agg=doi

Julien Mairal, Jean Ponce, Guillermo Sapiro, Andrew Zisserman, and Francis R Bach. Su-
pervised dictionary learning. In Advances in neural information processing systems, pages
1033–1040, 2009.

Francois Malgouyres and Joseph Landsberg. Stable recovery of the factors from a deep matrix
product and application to convolutional network. arXiv preprint arXiv:1703.08044, 2017.

Stephane Mallat. A wavelet tour of signal processing: the sparse way. Academic press, 2008.

Stephane G Mallat. A theory for multiresolution signal decomposition: the wavelet repre-
sentation. IEEE transactions on pattern analysis and machine intelligence, 11(7):674–693,
1989.

Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries.
Signal Processing, IEEE Transactions on, 41(12):3397–3415, 1993.

Per-Gunnar Martinsson. Rapid factorization of structured matrices via randomized sampling.
arXiv preprint arXiv:0806.2339, 2008.

Per-Gunnar Martinsson. A fast randomized algorithm for computing a hierarchically
semiseparable representation of a matrix. SIAM Journal on Matrix Analysis and Ap-
plications, 32(4):1251–1274, 2011.

Jǐŕı Matoušek. On variants of the Johnson–Lindenstrauss lemma. Random Structures &
Algorithms, 33(2):142–156, 2008.

Jean Morlet. Sampling theory and wave propagation. In Issues in Acoustic SignalImage
Processing and Recognition, pages 233–261. Springer, 1983.

Boaz Nadler, Nathan Srebro, and Xueyuan Zhou. Semi-supervised learning with the graph
Laplacian: The limit of infinite unlabelled data. In Proceedings of the 22nd Interna-
tional Conference on Neural Information Processing Systems, pages 1330–1338. Curran
Associates Inc., 2009.

Andrea R Nahmod. Generalized uncertainty principles on spaces of homogeneous type.
Journal of functional analysis, 119(1):171–209, 1994.

Frank Ong and Michael Lustig. Beyond low rank+ sparse: multiscale low rank matrix
decomposition. IEEE journal of selected topics in signal processing, 10(4):672–687, 2016.

Bastien Pasdeloup, Réda Alami, Vincent Gripon, and Michael Rabbat. Toward an uncer-
tainty principle for weighted graphs. 2015. URL http://arxiv.org/abs/1503.03291.

Nathanael Perraudin, Benjamin Ricaud, David Shuman, and Pierre Vandergheynst. Global
and local uncertainty principles for signals on graphs. pages 1–36, 2016. URL http:

//arxiv.org/abs/1603.03030.

William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numerical
recipes in C, volume 2. Cambridge university press Cambridge, 1996.

148

http://arxiv.org/abs/1503.03291
http://arxiv.org/abs/1603.03030
http://arxiv.org/abs/1603.03030

Erzsébet Ravasz and Albert-László Barabási. Hierarchical organization in complex net-
works. Physical Review E, 67(2):026112, February 2003. ISSN 1063-651X. doi: 10.1103/
PhysRevE.67.026112. URL http://link.aps.org/doi/10.1103/PhysRevE.67.026112.

Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation-based coarsening and multiscale graph
organization. Multiscale Modeling & Simulation, 9(1):407–423, 2011.

Heinz Rutishauser. The Jacobi method for real symmetric matrices. Numerische Mathematik,
9(1):1–10, 1966.

Berkant Savas, Inderjit Dhillon, et al. Clustered low rank approximation of graphs in in-
formation science applications. In Proceedings of the SIAM International Conference on
Data Mining (SDM), 2011.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Van-
dergheynst. The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains. Signal Processing Magazine, IEEE,
30(3):83–98, 2013a.

David I Shuman, Benjamin Ricaud, and Pierre Vandergheynst. Vertex-frequency analysis
on graphs. arXiv preprint arXiv:1307.5708, 2013b.

Daniel Spielman. Spectral graph theory. Lecture Notes, Yale University, pages 740–0776,
2009.

Elias M Stein and Rami Shakarchi. Fourier analysis: an introduction, volume 1. Princeton
University Press, 2011.

Nedelina Teneva, Pramod K Mudrakarta, and Risi Kondor. Multiresolution matrix com-
pression. In Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, pages 1441–1449, 2016.

Jayaraman J Thiagarajan, Karthikeyan N Ramamurthy, and Andreas Spanias. Multilevel
dictionary learning for sparse representation of images. In Digital Signal Processing Work-
shop and IEEE Signal Processing Education Workshop (DSP/SPE), 2011 IEEE, pages
271–276. IEEE, 2011.

R Tibshirani. Regression shrinkage and selection with the Lasso. Journal of the Royal
Statistical Society Series B, 58(1):267–288, 1996.

Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. SIAM, 1997.

Joel A Tropp. Greed is good: Algorithmic results for sparse approximation. Information
Theory, IEEE Transactions on, 50(10):2231–2242, 2004.

Joel A Tropp. Improved analysis of the subsamples randomized Hadamard transform. Ad-
vances in Adaptive Data Analysis, 3(1-2):115–126, 2011.

Mikhail Tsitsvero, Sergio Barbarossa, and Paolo Di Lorenzo. Signals on graphs: Uncertainty
principle and sampling. IEEE Transactions on Signal Processing, 64(18):4845–4860, 2016.

149

http://link.aps.org/doi/10.1103/PhysRevE.67.026112

Brani Vidakovic. Statistical modeling by wavelets. Wiley series in probability and mathe-
matical statistics. Wiley, New York, 1999. ISBN 978-0-471-29365-1.

Shusen Wang and Zhihua Zhang. Improving CUR matrix decomposition and the Nyström
approximation via adaptive sampling. The Journal of Machine Learning Research, 14(1):
2729–2769, 2013.

Christopher Williams and Matthias Seeger. Using the Nyström method to speed up kernel
machines. In Advances in Neural Information Processing Systems 13, 2001.

David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014.

W. W. Zachary. An information flow model for conflict and fission in small groups. Journal
of Anthropological Research, 33:452–473, 1977.

Kai Zhang and James T Kwok. Clustered Nyström method for large scale manifold learning
and dimension reduction. IEEE transactions on neural networks / a publication of the
IEEE Neural Networks Council, 21(10):1576–87, October 2010. ISSN 1941-0093. doi:
10.1109/TNN.2010.2064786.

Kai Zhang, Ivor W Tsang, and James T Kwok. Improved Nyström low-rank approximation
and error analysis. In Proceedings of the 25th international conference on Machine learning,
pages 1232–1239. ACM, 2008.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Journal
of computational and graphical statistics, 15(2):265–286, 2006.

150

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Preliminaries
	Overview
	Notation

	Fourier and Multiresolution Analysis
	Classical Fourier Transform
	From Fourier to Wavelets
	Smoothness
	Classical Multiresolution Analysis
	Spectral Graph Theory Concepts
	Spectral Fourier Transform
	Multiresolution on Discrete, Unstructured Spaces

	Multiresolution Designs for Discrete Spaces
	Diffusion Wavelets
	Spectral Graph Wavelets
	Multiscale Wavelets on Trees

	Multilevel and Multiscale Designs for Factorizing Matrices
	Jacobi's Algorithm
	Treelets
	The Fast Walsh–Hadamard Transform
	The Fast Haar Wavelet Transform
	Multilevel and Multiscale Dictionary Learning
	Hierarchical Matrices

	Multiresolution Matrix Factorization
	Multiresolution Matrix Factorization (MMF)
	Computing MMFs
	Jacobi MMFs
	Parallel MMFs
	Randomized MMFs
	Computational Details

	Theoretical Analysis
	Proofs of Propositions and Theorems
	Applications of MMF
	Experiments
	Comparison to Treelets
	Comparison of MMF Algorithms
	Effect of MMF Rotation Order
	Recovering Matrix Structure with MMF
	Comparison of MMF and PCA
	MMF on Mixture Models
	MMF Wavelets

	MMF for Matrix Compression
	Principle Component Analysis (PCA)
	Projection Based Methods for Matrix Compression
	Nyström Methods for Matrix Compression
	MMF for Matrix Compression
	Experiments

	Parallel Multiresolution Matrix Factorization
	Limitations of MMF Algorithms
	Parallel MMF (pMMF)
	Clustering
	Blocked Matrices
	Randomized Greedy Search for Rotations
	Sparsity and Matrix Free MMF Arithmetic

	pMMF Implementation: The pMMF Software Library
	pMMF Experiments
	pMMF Matrix Approximation Quality
	pMMF Scalability

	Conclusion and Contribution Summary
	References

